Study on Cracks of Last Freeze in Al-Mg Alloy Flat Ingots

Article Preview

Abstract:

In casting of Al-Mg alloy, especially in the aluminum alloy with high Mg content of more than 4 wt.% Mg, some cold cracks were found in last freeze of the flat ingots. The depth of cracks was bigger than 200 mm. The size of scrap removal of ingot was thus increased by 70 mm or more, and the yield of the flat ingots was greatly affected. Air cooling time of more than 20 min after casting was a better to reduce cracks in last freeze of Al-Mg alloy flat ingots.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

85-89

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hirayama, H. Toda, D. Fu, M. Uesugi, Damage micromechanisms of stress corrosion cracking in Al-Mg alloy with high magnesium content, Corros. Sci. 184 (2021) 109343.

DOI: 10.1016/j.corsci.2021.109343

Google Scholar

[2] H. Yoshida, H. Uchida, Al-Mg alloys (1), J. Jpn. I. Light Met. 61 (2021) 568-582.

Google Scholar

[3] Y.L. Li, W.J. Xia, H.G. Yan, J.H. Chen, T. Ding, Y.P. Sun, X.Y. Li, Microstructure and mechanical properties of friction-stir-welded high-Mg-alloyed Al–Mg alloy plates at different rotating rates, Rare Metals 40 (2021) 2167-2178.

DOI: 10.1007/s12598-020-01558-3

Google Scholar

[4] A.D. Evstifeev, G.A. Volkov, Effect of Mg on dynamic properties of Al-Mg alloys, Procedia Struct. I. 2020, 28:2261-2266.

DOI: 10.1016/j.prostr.2020.11.059

Google Scholar

[5] E. Aldalur, A. Suárez, F. Veiga F, Metal transfer modes for wire arc additive manufacturing Al-Mg alloys: influence of heat input in microstructure and porosity, J. Mater. Process. Tech. 297 (2021) 117271.

DOI: 10.1016/j.jmatprotec.2021.117271

Google Scholar

[6] H.W. Son, J.C. Lee, H.S. Park, S.K. Hyun, Strain distributions of plane-strained and simple-sheared Al–Mg alloy, Met. Mater. Int. 3 (2020) 00677.

DOI: 10.1007/s12540-020-00677-x

Google Scholar

[7] X. Li, W. Xia, H. Yan, High strength and large ductility of a fine-grained Al–Mg alloy processed by high strain rate hot rolling and cold rolling, Mater. Sci. Eng. A 787 (2020) 139481.

DOI: 10.1016/j.msea.2020.139481

Google Scholar

[8] W. Yan, G. Fu, Y. Xu, W. Lai, H. Chen, Effect of Sr addition on the microstructure and properties of the A356 al alloy, Mater. Tech. 55 (2021) 109-114.

DOI: 10.17222/mit2020.038

Google Scholar

[9] H. Wang, H. Geng, D. Zhou, Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys, Mater. Sci. Eng. 771 (2020) 138613.1-138613.6.

DOI: 10.1016/j.msea.2019.138613

Google Scholar

[10] W. Yan, G. Fu, H. Chen, L. Song, W. Liu, Texture characteristics of 1235 aluminum alloy after rolling, Mater. Tech. 53 (2019) 821-825.

DOI: 10.17222/mit.2018.195

Google Scholar

[11] H. Jian, Y. Wang, X. Yang, K. Xiao, Microstructure and fatigue crack growth behavior in welding joint of Al-Mg alloy, Eng. Fail. Anal. 120 (2020) 105034.

DOI: 10.1016/j.engfailanal.2020.105034

Google Scholar

[12] W.D. Yan, G.S. Fu, H.L. Chen, G.Q. Chen, Effects of oxide inclusions on flow stress behavior of 1235 aluminum alloy during hot compression, J. Mater. Eng. Perform. 21 (2012) 2203–2206.

DOI: 10.1007/s11665-012-0152-0

Google Scholar

[13] Y.L. Li, W.J. Xia, H.G. Yan, J.H. Chen, T Ding, Y.P. Sun, X.Y. Li, Microstructure and mechanical properties of friction-stir-welded high-Mg-alloyed Al–Mg alloy plates at different rotating rates, Rare Metals 40 (2021) 2167-2178.

DOI: 10.1007/s12598-020-01558-3

Google Scholar

[14] B. Apa, C. Lstb, A. Svk, C. Lp, Imparting high-temperature grain stability to an Al-Mg alloy, Scripta Mater. 190 (2021) 141-146.

DOI: 10.1016/j.scriptamat.2020.08.035

Google Scholar