Electrochemical Processing of Tungsten-Cobalt Pseudoalloys, Receiving Tungsten Powder for Modification of Aramid Tissue

Article Preview

Abstract:

Electrochemical research is focused on the tungsten extraction during acid electrochemical treatment of WC-Co pseudoalloy in chloride solutions. The target resulted products of the treatment are: tungsten oxide (VI), tungsten powder with a given particle size distribution (2…3 μm). Based on the analysis of kinetics, the mechanism of dissolution of the WC-Co pseudoalloy in a solution of 2.5 mol∙dm-3 HCl and with the addition of HF was proposed. It was found that a well-soluble higher tungsten chloride is formed on the surface of the pseudoalloy, which is eventually hydrolyzed in aqueous solution to form tungsten oxides. The dispersion control levers were investigated and the technological parameters of obtaining tungsten metal powder from low-temperature ionic alloys (NaCl-KCl-CsBr-NaF) were determined, which make it possible to obtain tungsten metal powder of a given particle size distribution. It is stated that the use of tungsten powder (W or WO3) for the modification of aramid fiber can significantly increase the heat resistance of aramid fabric and reduce its wear

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 334)

Pages:

3-12

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.V. Lyashok, B.I. Bayrachnyy, I.A. Tokareva [i dr.], Kompleksnaya pererabotka tekhnogennykh otkhodov vol'frama. Energotekhnologii i resursosberezheniye, 1 (2012) 43–46. [in Russian].

Google Scholar

[2] B.I. Bayrachnyy, L.V. Lyashok, Tekhnichna elektrokhimiya: pidruchnyk. (CH. 4). Hidroelektrometalurhiya. Kharkiv: NTU «KHPI», 2012. [in Ukrainian].

Google Scholar

[3] Yu.M. Korolev, T.Sh. Agnokov, M.F. Sviderskiy i dr. Ftoridnaya skhema pererabotki metallicheskikh otkhodov vol'frama i molibdena. Khimiya i tekhnologiya molibdena i vol'frama. (s. 26–34). Nal'chik, 1983. [in Russian].

Google Scholar

[4] S.S. Deyneka, G.N. Zviadadze, Khloridnaya pererabotka vtorichnogo syr'ya vol'frama. Tsvetnyye metally, 9 (1984) 65–68. [in Russian].

Google Scholar

[5] Xingbo Yang, Jie Xiong, Toshinari Sumi, US Patent No 20110048968A1. 2011. Recycling tungsten carbide.

Google Scholar

[6] V.R. Ivashkiv, Teoretychni osnovy i tekhnolohichni zasady elektrokhimichnoho pereroblennya psevdosplavu WC–Ni. (Dys. kand.tekh.nauk). Kharkiv, 2016. [in Ukrainian].

Google Scholar

[7] V.N. Zaichenko, S.S. Fomanyuk, Yu.S. Krasnov, Recovery of tungsten and cobalt from secondary raw materials by a combined electrochemical and chemical procedure. Russian J. Applied Chem, 83 (9) (2010) 1660–1662.

DOI: 10.1134/s1070427210090284

Google Scholar

[8] G.A. Kolobov, S.A. Vodennikov, V.V. Pavlov [ta ín.], Pererabotka otkhodov vol'fram– i molibdensoderzhashchikh staley i slozhnolegirovannykh splavov. Metalurgíya, 1 (35). (2016) 19–23. [in Russian].

Google Scholar

[9] A.A. Palant, V.A. Pavlovskiy, Fiziko–khimicheskiye i tekhnologicheskiye osnovy elektrokhimicheskoy pererabotki otkhodov metallicheskogo vol'frama. Tekhnol. Met, 11 (2003) 3–7. [in Russian].

Google Scholar

[10] P.K. Katiyar, N.C. Randhava, J. Hait et al. Anodic dissolution behavior of tungsten carbide scraps in ammoniacal media. Advanced materials research, 828 (2014) 11–20.

DOI: 10.4028/www.scientific.net/amr.828.11

Google Scholar

[11] A.I. Dikusar, I.A. Ivanenko, B.P. Saushkin [i dr.], Vysokoskorostnoye anodnoye rastvoreniye zharoprochnykh khromonikelevykh splavov, soderzhashchikh vol'fram i reniy. Elektricheskaya razmernaya obrabotka materialov, 43 (4) (2007) 4–11. [in Russian].

Google Scholar

[12] V.V. Malyshev, S.A. Butusov, Razdeleniye kobal'ta i karbida vol'frama anodnym rastvoreniyem tverdykh splavov v rastvorakh fosfornoy kisloty. Zhurnal prikladnoy khimii, 76 (3) (2003) 398–401. [in Russian].

Google Scholar

[13] R. Morales, R. E. Aune, S. Seetharaman, O. Grinder, The powder metallurgy processing of refractory metals and alloys. Journal of the Minerals, Metals and Materials Society, 55 (10) (2003) 20–23.

DOI: 10.1007/s11837-003-0169-9

Google Scholar

[14] G.G. Tul'skij, L.V. Liashok, M.P. Osmanova and I.N. Kjlupaev. Electrochemical Production of Tungsten Powders from Tungsten Hardmetal Waste. Powder Metallurgy and Metal Ceramics, 58 (9-10) (2020) 499–502.

DOI: 10.1007/s11106-020-00102-3

Google Scholar

[15] Kolupaev I., O. Sobol, A study of initial stages for formation of carbon condensates on copper. Eastern-european journal of enterprise technologies, 4/12 ( 94 ) (2018) 49–55.

DOI: 10.15587/1729-4061.2018.140970

Google Scholar

[16] G.G. Tul'skij, L.V. Lyashok, I.M. Kolupaev, M.P. Osmanova. Ukrainian utility model patent UA No. 149278 U. 2021. The method of obtaining heat-resistant aramid fiber.

Google Scholar

[17] O.G. Zarubitskiy, V.P. Orel, B.F. Dmitruk, Pirokhimicheskaya tekhnologiya pererabotki vol'fram– i kobal't–soderzhashchego syr'ya. Zhurnal prikladnoy khimii, 77 (11) (2004) 1761–1763. [in Russian].

Google Scholar

[18] T. Angerer, S. Luidold, H. Antrekowitsch, Technologien zum Recycling von Hartmetallschrotten. Tell. 3. Erzmetall, 64 (6) (2011) 328.

Google Scholar

[19] C. Edtmaier, R. Schiesser, C. Meissl etc. Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching. Hydrometallurgy, 76 (1–2) (2005) 63–71.

DOI: 10.1016/j.hydromet.2004.09.002

Google Scholar