On Some Peculiarities of Numerical Modelling of Cement-Based Composites

Article Preview

Abstract:

Computational prediction of damage in cement-based composites, as steel fibre reinforced ones, under mechanical, thermal, etc. loads, manifested as creation of micro-fractured zones, followed by potential initiation and evolution of macroscopic cracks, is a rather delicatematter, due to the necessity of bridging between micro- and macro-scales. This short paper presents a relatively simple approach, using certain extension of the finite element technique, open to possible generalizations. Such model admits proper verification of its existence andconvergence results, from the physical and mathematical formulation up to software implementation of relevant algorithms. Its practical applicability is documented on computational examples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 338)

Pages:

135-140

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Melenk and I. Babuška: Comput. Meth. Appl. Mech. Eng. 39 (1996), 289–314.

Google Scholar

[2] T. Strouboulis, K. Copps and I. Babuška: Comput. Meth. Appl. Mech. Eng. 190 (2001), 4081–4193.

Google Scholar

[3] T. Belytchko and T. Black: Int. J. Numer. Meth. Engrg. 45 (1999), 601–620.

Google Scholar

[4] N. Moës, J. Dolbow and T. Belytschko: Int. J. Numer. Meth. Engrg. 46 (1999), 131–150.

Google Scholar

[5] N. Sukumar, N. Moës, B. Moran and T. Belytschko: Int. J. Numer. Meth. Engrg. 48 (2000), 1549–1570.

Google Scholar

[6] M. Stolarska, D. D. Chopp, N. Moës and T. Belyschko: Int. J. Numer. Meth. Engrg. 51 (2001), 943–960.

Google Scholar

[7] G. J. Wagner, N. Moës, W. K. Liu and T. Belytschko: Int. J. Numer. Meth. Engrg. 51 (2001), 293–313.

Google Scholar

[8] T. Elguedj, A. Gravouil and A. Combescure: Comput. Meth. Appl. Mech. Eng. 195 (2006), 501–515.

Google Scholar

[9] M. G. Pike and C. Oskay: Finite Elem. Anal. Des. 106 (2005), 16–31.

Google Scholar

[10] T.-P. Fries and T. Belytchko: Int. J. Numer. Meth. Engrg. 68 (2006), 1358–1385.

Google Scholar

[11] E. Gordeliy and A. Peirce: Comput. Meth. Appl. Mech. Engrg. 283 (2015) 474–502.

Google Scholar

[12] J. P. Wolf and Ch. Song: Comput. Meth. Appl. Mech. Engrg. 190 (2001), 5551–5568.

Google Scholar

[13] J. P. Doherty and A. J. Deeks: Comput. Geotech. 32 (2005), 436–444.

Google Scholar

[14] Y. D. Ha and F. Bobaru: Eng. Fract. Mech. 78 (2011), 1159–1168.

Google Scholar

[15] Z. P. Bažant and M. Jirásek: J. Eng. Mech. 128 (2002), 1119–1149.

Google Scholar

[16] P. Havlásek, P. Grassl and M. Jirásek: Eng. Fract. Mech. 157 (2016), 72–85.

Google Scholar

[17] Z. Gao, L. Zhang and W. Yu: Eng. Fract. Mech. 189 (2018), 481–500.

Google Scholar

[18] A. Evgrafov and J. C. Belido: Math. Mech. Solids 24 (2019), 1935–(1953).

Google Scholar

[19] H. Li, J. Li and H. Yuan: Theor. Appl. Fract. Mech. 97 (2018), 236–249.

Google Scholar

[20] Y. Sun, M. G. Edwards, B. Chen and Ch. Li: Eng. Fract. Mech. 257 (2021), 108036 / 1–33.

Google Scholar

[21] J. Vala and V. Kozák: Theor. Appl. Fract. Mech. 127 (2020), 102486 / 1–8.

Google Scholar

[22] J. Vala and V. Kozák: Appl. Math. 66 (2021), 815–836.

Google Scholar

[23] C. Giry, F. Dufour and J. Mazars: Int. J. Solids and Struct. 48 (2011), 3431–3443.

Google Scholar