[1]
R. Chaubey, S. Sahu, O.O. James, S.A. Maity, A review on development of industrial processes and emergingtechniques for production of hydrogen from renewable sustainable sources, Renew. Sustain. Energy Rev. 23 (2013) 443-462.
DOI: 10.1016/j.rser.2013.02.019
Google Scholar
[2]
M. Momirlan, T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system fora cleaner planet, Int. J. Hydrog. Energy 30 (2005) 795-802.
DOI: 10.1016/j.ijhydene.2004.10.011
Google Scholar
[3]
D. Pukazhselvan, N. Nasani, P. Correia, E.C. Argibay, G.O. Irurueta, D.G. Stroppa, D.P. Fagg, Evolution of reduced Ti containing phase (s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2, Journal of Power Sources 362 (2017) 174-183.
DOI: 10.1016/j.jpowsour.2017.07.032
Google Scholar
[4]
L.J. Bannenberg, C. Boelsma, K. Asano, H. Schreuders, B. Dam, B., Metal Hydride Based Optical Hydrogen Sensors. Journal of the Physical Society of Japan89 (2020), 051003-1-051003-9.
DOI: 10.7566/jpsj.89.051003
Google Scholar
[5]
M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal-organic framworks, Chem. Rev.112 (2012) 782-835.
DOI: 10.1021/cr200274s
Google Scholar
[6]
A. Zaluska, L. Zaluski, J.O. Strom Olsen, Nanocrystalline magnesium for hydrogen storage, J. Alloys Compd. 288 (1999) 217-225.
DOI: 10.1016/s0925-8388(99)00073-0
Google Scholar
[7]
J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Yttrium and lanthanum hydride films with switchable optical properties, Nature 380 (1996) 231-234.
DOI: 10.1038/380231a0
Google Scholar
[8]
P.H.L. Notten, M. Kremers, R. Griessen, Optical Switching of Y‐Hydride Thin Film Electrodes: A Remarkable Electrochromic Phenomenon, J. Electrochem. Soc. 143 (1996) 3348-3353.
DOI: 10.1149/1.1837210
Google Scholar
[9]
D.R. Rosseinsky, R.J. Mortimer,Electrochromic Systems and the Prospects for Devices, Advanced Materials13 (2001) 783-793.
Google Scholar
[10]
A. Remhof, S. J. van der Molen, A. Antosik, A. Dobrowolska, N. J. Koeman, R. Griessen, Switchable mirrors for visualization and control of hydrogen diffusion in transition metals, Phys. Rev. B 66 (2002) 020101(R).
DOI: 10.1103/physrevb.66.020101
Google Scholar
[11]
I.A.M.E. Giebels,Shinning Light on Magnesium Based Switchable Mirrors, PhD thesis, Vrije Universiteit, Amsterdam (2004).
Google Scholar
[12]
J. Huot, G. Liang, R. Schulz,Mechanically alloyed metal hydride systems, Appl. Phys.A72 (2001) 187-195.
DOI: 10.1007/s003390100772
Google Scholar
[13]
C.X. Shang, M. Bououdina, Y. Song, Z.X. Guo,Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage, Int. J. Hydrogen Energy29 (2004) 73-80.
DOI: 10.1016/s0360-3199(03)00045-4
Google Scholar
[14]
C.J. Webb, A review of catalyst-enhanced magnesiumhydride as a hydrogen storage material, J PhysChem Solids84 (2015) 96-106.
Google Scholar
[15]
G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalyticeffect of transition metals on hydrogen sorption innanocrystalline ball milled MgH2-Tm (Tm-Ti, V, Mn, Feand Ni) systems, J Alloys Compd. 292 (1999) 247-252.
DOI: 10.1016/s0925-8388(99)00442-9
Google Scholar
[16]
J. H. Dai, Y. Song, R. Yang, First Principles Study on Hydrogen Desorption from a Metal (=Al, Ti, Mn, Ni) Doped MgH2 (110) Surface, The Journal of Physical Chemistry C 114 (2010), 11328-11334.
DOI: 10.1021/jp103066g
Google Scholar
[17]
R. Domènech-Ferrer, M. GurusamySridharan, G. Garcia, F. Pi, J. Rodríguez-Viejo, Hydrogenation properties of pure magnesium and magnesium-aluminium thin films, J. Power Sources 169 (2007) 117-122.
DOI: 10.1016/j.jpowsour.2007.01.049
Google Scholar
[18]
D. Milcius, L. Pranevicius, G. Thomas, M. Lelis, Behavior of Hydrogen implanted during physical vapor deposition in Al, Mg and MgAl films, Materials science (Medþiagotyra) 10 (2004) 217-220.
Google Scholar
[19]
J.I. Pankove, D.E. Carlson J.E. Berkeyheiser, R.O. Wance, Neutralization of Shallow Acceptor Levels in Silicon by Atomic Hydrogen. Phys. Rev. Lett. 51 (1983) 2224-2225.
DOI: 10.1103/physrevlett.51.2224
Google Scholar
[20]
M.K. Jangid, M. Singh, Hydrogenation and annealing effect on electrical properties of nanostructured Mg/Mn bilayer thin films, Int. J. Hydrogen Energy 37 (2012) 3786-3791.
DOI: 10.1016/j.ijhydene.2011.05.116
Google Scholar
[21]
M. Fichtner, J. Engel, O. Fuhr, O. Kircher, O. Rubner, Nanocrystalline aluminum hydrides for hydrogen storage, Materials science and Engineering B108 (2004) 42-47.
DOI: 10.1016/j.mseb.2003.10.036
Google Scholar
[22]
H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, Journal of Applied Physics50 (1979) 5052.
DOI: 10.1063/1.325607
Google Scholar
[23]
M.K. Jangid, S.S. Sharma, D. Mathur, Y.C. Sharma, Optical, electrical and structural study of Mg/Ti bilayer thin film for hydrogen storage applications, Materials Letters: X 10 (2021) 100076.
DOI: 10.1016/j.mlblux.2021.100076
Google Scholar
[24]
S.P. Nehra, M.K. Jangid, A. Kumar, M. Singh, Y.K. Vijay, Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films, Int. J. Hydrogen Energy 34 (2009) 7306-7310.
DOI: 10.1016/j.ijhydene.2009.06.054
Google Scholar
[25]
M. Kobayashi, A. Kinoshita,K. Saraswat, H.S.P. Wong, Y. Nishi, Fermi level depinning in metal/GeSchottky junction for metal source/drain Gemetaloxide- semiconductor field-effect-transistor application, Journal of Applied Physics 105 (2009) 023702.
DOI: 10.1063/1.3065990
Google Scholar
[26]
J.Y. Lee, S.M. Byun, C.N. Park, J.K. Park, A study of the hydriding kinetics of TiFe and its alloys, J. less common Metals, 87 (1982) 149-164.
DOI: 10.1016/0022-5088(82)90050-9
Google Scholar
[27]
H. Fujii, V.K. Sinha, F. Pourarian, W.E. Wallace,Effect of hydrogen absorption on the magnetic properties of ZrMn2-xFex ternaries with a C14 structure, J.Less Common Metals85 (1982) 43-54.
DOI: 10.1016/0022-5088(82)90057-1
Google Scholar
[28]
M. Singh, The effect of hydrogen pressure on resistivity and charge carrier concentration in FeTi and FeTi-Mn thin films, Int. J. Hydrogen Energy 21 (1996) 223-228.
DOI: 10.1016/0360-3199(95)00075-5
Google Scholar
[29]
S. Tanaka, J. D. Clewley, T. B. Flanagan, The slow step for hydrogen absorption (desorption) by activated LaNi5, Journal of the Less-Common Metals 56 (1977) 137-139.
DOI: 10.1016/0022-5088(77)90228-4
Google Scholar