Study on Hydriding Kinetics, Structural Properties and Electrical Conductivity of D.C. Magnetron Sputtered Mg/Al Thin Films

Article Preview

Abstract:

Mg/Al bilayer thin films were successfully deposited by using D.C. magnetron sputtering technique. To study the effect of hydrogenation on structural, optical and electrical properties of Mg/Al thin films, the hydrogenation of the annealed thin films was done under different hydrogen pressure (15, 30 & 30psi). The structural properties of the films were investigated by Raman spectroscopy and decrease in intensity of Raman peaks with increasing hydrogen pressure was observed; this typically confirms the existence of hydrogen in Mg/Al thin films. The thin film is of semiconducting nature and it was found that the electrical conductivity of the film decreases with increasing hydrogen pressure applied. In the hydriding kinetics of the films, it was seen that the resistivity increased along with hydrogen absorption time. Eventually, it attains the equilibrium stage indicating the hydrogen absorption in the thin films. The rate of absorption of hydrogen increases with the pressure of hydrogen over different time ranges and decreases with the absorption of hydrogen over time.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 338)

Pages:

83-90

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Chaubey, S. Sahu, O.O. James, S.A. Maity, A review on development of industrial processes and emergingtechniques for production of hydrogen from renewable sustainable sources, Renew. Sustain. Energy Rev. 23 (2013) 443-462.

DOI: 10.1016/j.rser.2013.02.019

Google Scholar

[2] M. Momirlan, T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system fora cleaner planet, Int. J. Hydrog. Energy 30 (2005) 795-802.

DOI: 10.1016/j.ijhydene.2004.10.011

Google Scholar

[3] D. Pukazhselvan, N. Nasani, P. Correia, E.C. Argibay, G.O. Irurueta, D.G. Stroppa, D.P. Fagg, Evolution of reduced Ti containing phase (s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2, Journal of Power Sources 362 (2017) 174-183.

DOI: 10.1016/j.jpowsour.2017.07.032

Google Scholar

[4] L.J. Bannenberg, C. Boelsma, K. Asano, H. Schreuders, B. Dam, B., Metal Hydride Based Optical Hydrogen Sensors. Journal of the Physical Society of Japan89 (2020), 051003-1-051003-9.

DOI: 10.7566/jpsj.89.051003

Google Scholar

[5] M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal-organic framworks, Chem. Rev.112 (2012) 782-835.

DOI: 10.1021/cr200274s

Google Scholar

[6] A. Zaluska, L. Zaluski, J.O. Strom Olsen, Nanocrystalline magnesium for hydrogen storage, J. Alloys Compd. 288 (1999) 217-225.

DOI: 10.1016/s0925-8388(99)00073-0

Google Scholar

[7] J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Yttrium and lanthanum hydride films with switchable optical properties, Nature 380 (1996) 231-234.

DOI: 10.1038/380231a0

Google Scholar

[8] P.H.L. Notten, M. Kremers, R. Griessen, Optical Switching of Y‐Hydride Thin Film Electrodes: A Remarkable Electrochromic Phenomenon, J. Electrochem. Soc. 143 (1996) 3348-3353.

DOI: 10.1149/1.1837210

Google Scholar

[9] D.R. Rosseinsky, R.J. Mortimer,Electrochromic Systems and the Prospects for Devices, Advanced Materials13 (2001) 783-793.

Google Scholar

[10] A. Remhof, S. J. van der Molen, A. Antosik, A. Dobrowolska, N. J. Koeman, R. Griessen, Switchable mirrors for visualization and control of hydrogen diffusion in transition metals, Phys. Rev. B 66 (2002) 020101(R).

DOI: 10.1103/physrevb.66.020101

Google Scholar

[11] I.A.M.E. Giebels,Shinning Light on Magnesium Based Switchable Mirrors, PhD thesis, Vrije Universiteit, Amsterdam (2004).

Google Scholar

[12] J. Huot, G. Liang, R. Schulz,Mechanically alloyed metal hydride systems, Appl. Phys.A72 (2001) 187-195.

DOI: 10.1007/s003390100772

Google Scholar

[13] C.X. Shang, M. Bououdina, Y. Song, Z.X. Guo,Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage, Int. J. Hydrogen Energy29 (2004) 73-80.

DOI: 10.1016/s0360-3199(03)00045-4

Google Scholar

[14] C.J. Webb, A review of catalyst-enhanced magnesiumhydride as a hydrogen storage material, J PhysChem Solids84 (2015) 96-106.

Google Scholar

[15] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalyticeffect of transition metals on hydrogen sorption innanocrystalline ball milled MgH2-Tm (Tm-Ti, V, Mn, Feand Ni) systems, J Alloys Compd. 292 (1999) 247-252.

DOI: 10.1016/s0925-8388(99)00442-9

Google Scholar

[16] J. H. Dai, Y. Song, R. Yang, First Principles Study on Hydrogen Desorption from a Metal (=Al, Ti, Mn, Ni) Doped MgH2 (110) Surface, The Journal of Physical Chemistry C 114 (2010), 11328-11334.

DOI: 10.1021/jp103066g

Google Scholar

[17] R. Domènech-Ferrer, M. GurusamySridharan, G. Garcia, F. Pi, J. Rodríguez-Viejo, Hydrogenation properties of pure magnesium and magnesium-aluminium thin films, J. Power Sources 169 (2007) 117-122.

DOI: 10.1016/j.jpowsour.2007.01.049

Google Scholar

[18] D. Milcius, L. Pranevicius, G. Thomas, M. Lelis, Behavior of Hydrogen implanted during physical vapor deposition in Al, Mg and MgAl films, Materials science (Medþiagotyra) 10 (2004) 217-220.

Google Scholar

[19] J.I. Pankove, D.E. Carlson J.E. Berkeyheiser, R.O. Wance, Neutralization of Shallow Acceptor Levels in Silicon by Atomic Hydrogen. Phys. Rev. Lett. 51 (1983) 2224-2225.

DOI: 10.1103/physrevlett.51.2224

Google Scholar

[20] M.K. Jangid, M. Singh, Hydrogenation and annealing effect on electrical properties of nanostructured Mg/Mn bilayer thin films, Int. J. Hydrogen Energy 37 (2012) 3786-3791.

DOI: 10.1016/j.ijhydene.2011.05.116

Google Scholar

[21] M. Fichtner, J. Engel, O. Fuhr, O. Kircher, O. Rubner, Nanocrystalline aluminum hydrides for hydrogen storage, Materials science and Engineering B108 (2004) 42-47.

DOI: 10.1016/j.mseb.2003.10.036

Google Scholar

[22] H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, Journal of Applied Physics50 (1979) 5052.

DOI: 10.1063/1.325607

Google Scholar

[23] M.K. Jangid, S.S. Sharma, D. Mathur, Y.C. Sharma, Optical, electrical and structural study of Mg/Ti bilayer thin film for hydrogen storage applications, Materials Letters: X 10 (2021) 100076.

DOI: 10.1016/j.mlblux.2021.100076

Google Scholar

[24] S.P. Nehra, M.K. Jangid, A. Kumar, M. Singh, Y.K. Vijay, Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films, Int. J. Hydrogen Energy 34 (2009) 7306-7310.

DOI: 10.1016/j.ijhydene.2009.06.054

Google Scholar

[25] M. Kobayashi, A. Kinoshita,K. Saraswat, H.S.P. Wong, Y. Nishi, Fermi level depinning in metal/GeSchottky junction for metal source/drain Gemetaloxide- semiconductor field-effect-transistor application, Journal of Applied Physics 105 (2009) 023702.

DOI: 10.1063/1.3065990

Google Scholar

[26] J.Y. Lee, S.M. Byun, C.N. Park, J.K. Park, A study of the hydriding kinetics of TiFe and its alloys, J. less common Metals, 87 (1982) 149-164.

DOI: 10.1016/0022-5088(82)90050-9

Google Scholar

[27] H. Fujii, V.K. Sinha, F. Pourarian, W.E. Wallace,Effect of hydrogen absorption on the magnetic properties of ZrMn2-xFex ternaries with a C14 structure, J.Less Common Metals85 (1982) 43-54.

DOI: 10.1016/0022-5088(82)90057-1

Google Scholar

[28] M. Singh, The effect of hydrogen pressure on resistivity and charge carrier concentration in FeTi and FeTi-Mn thin films, Int. J. Hydrogen Energy 21 (1996) 223-228.

DOI: 10.1016/0360-3199(95)00075-5

Google Scholar

[29] S. Tanaka, J. D. Clewley, T. B. Flanagan, The slow step for hydrogen absorption (desorption) by activated LaNi5, Journal of the Less-Common Metals 56 (1977) 137-139.

DOI: 10.1016/0022-5088(77)90228-4

Google Scholar