[1]
L. Gao, Y. Luo, Y. Lin, T. Su, R. Su, and J. Feng, Silica-supported zinc glutarate catalyst synthesized by rheological phase reaction used in the copolymerization of carbon dioxide and propylene oxide,, J. Polym. Res., vol. 22, no. 11, (2015).
DOI: 10.1007/s10965-015-0849-5
Google Scholar
[2]
S. Ye, S. Wang, L. Lin, M. Xiao, and Y. Meng, CO2 derived biodegradable polycarbonates: Synthesis, modification and applications,, Adv. Ind. Eng. Polym. Res., vol. 2, no. 4, p.143–160, (2019).
DOI: 10.1016/j.aiepr.2019.09.004
Google Scholar
[3]
J. S. Kim, H. Kim, J. Yoon, K. Heo, and M. Ree, Synthesis of zinc glutarates with various morphologies using an amphiphilic template and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide,, J. Polym. Sci. Part A Polym. Chem., vol. 43, no. 18, p.4079–4088, (2005).
DOI: 10.1002/pola.20905
Google Scholar
[4]
A. R. Rahmat and B. A. Wasmi, Determination of zinc glutarate complexes synthesis factors affecting production of propylene carbonate from carbon dioxide and propylene oxide,, Chem. Eng. J., (2017).
DOI: 10.1016/j.cej.2017.06.075
Google Scholar
[5]
R. R. Ang et al., Determination of zinc glutarate complexes synthesis factors affecting production of propylene carbonate from carbon dioxide and propylene oxide,, Chem. Eng. J., vol. 327, p.120–127, (2017).
DOI: 10.1016/j.cej.2017.06.075
Google Scholar
[6]
J. Marbach, B. Nörnberg, A.F. Rahlf, and G.A. Luinstra, Zinc glutarate-mediated copolymerization of CO2 and PO-parameter studies using design of experiments,, Catal. Sci. Technol., vol. 7, no. 13, p.2897–2905, (2017).
DOI: 10.1039/c7cy00383h
Google Scholar
[7]
J.S. Kim et al., NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide,, J. Catal., vol. 218, no. 2, p.386–395, (2003).
DOI: 10.1016/s0021-9517(03)00122-2
Google Scholar
[8]
Y. Z. Meng, L. C. Du, S. C. Tiong, Q. Zhu, and A. S. Hay, Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer,, J. Polym. Sci. Part A Polym. Chem., vol. 40, no. 21, p.3579–3591, (2002).
DOI: 10.1002/pola.10452
Google Scholar
[9]
J. Shi et al., Synthesis of Zn-Fe double metal cyanide complexes with imidazolium-based ionic liquid cocatalysts: Via ball milling for copolymerization of CO2 and propylene oxide,, RSC Adv., vol. 8, no. 12, p.6565–6571, (2018).
DOI: 10.1039/c7ra12528c
Google Scholar
[10]
J. Sebastian and D. Srinivas, Influence of method of preparation of solid, double-metal cyanide complexes on their catalytic activity for synthesis of hyperbranched polymers,, Appl. Catal. A Gen., vol. 464–465, p.51–60, (2013).
DOI: 10.1016/j.apcata.2013.05.024
Google Scholar
[11]
N.V. Semikolenova, V.N. Panchenko, E.A. Paukshtis, M.A. Matsko, and V.A. Zakharov, Study of supported catalysts, prepared via binding of Fe(II) bis(imino)pyridyl complex with silica, modified by alumina: Effect of surface Lewis acidic sites on catalyst composition and activity in ethylene polymerization,, Mol. Catal., vol. 486, no. March, p.110878, (2020).
DOI: 10.1016/j.mcat.2020.110878
Google Scholar
[12]
S. Cui, Y. Qin, and Y. Li, Sustainable Approach for the Synthesis of Biopolycarbonates from Carbon Dioxide and Soybean Oil,, ACS Sustain. Chem. Eng., vol. 5, no. 10, p.9014–9022, (2017).
DOI: 10.1021/acssuschemeng.7b01819
Google Scholar
[13]
M. R. Kember, P. D. Knight, P. T. R. Reung, and C. K. Williams, Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure,, Angew. Chemie - Int. Ed., vol. 48, no. 5, p.931–933, (2009).
DOI: 10.1002/anie.200803896
Google Scholar
[14]
Y. Y. Zhang, X. H. Zhang, R. J. Wei, B. Y. Du, Z. Q. Fan, and G. R. Qi, Synthesis of fully alternating polycarbonate with low Tg from carbon dioxide and bio-based fatty acid,, RSC Adv., vol. 4, no. 68, p.36183–36188, (2014).
DOI: 10.1039/c4ra06157h
Google Scholar
[15]
G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff, Transesterification of soybean oil with zeolite and metal catalysts,, Appl. Catal. A Gen., vol. 257, no. 2, p.213–223, (2004).
DOI: 10.1016/j.apcata.2003.07.010
Google Scholar