[1]
A. Iveković, M.L. Montero-Sistiaga, J. Vleugels, J. Kruth, K. Vanmeensel, Crack mitigation in Laser Powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach, J. Alloys Compd. 864 (2021) 158803.
DOI: 10.1016/j.jallcom.2021.158803
Google Scholar
[2]
S. Zhang, J. Liu, X. Lin, Y. Huang, M. Wang, Y. Zhang, T. Qin, W. Huang, Effect of electrolyte solutions on the electrochemical dissolution behavior of additively manufactured Hastelloy X superalloy via laser solid forming, J. Alloys Compd. 878 (2021) 160395.
DOI: 10.1016/j.jallcom.2021.160395
Google Scholar
[3]
Y. Zhao, B. Gong, Y. Wang, Y. Gu, Effects of microstructure anisotropy on dynamic fracture behaviors of a selective laser melting nickel-based superalloy, Mater. Sci. Eng. A 858 (2022) 144133.
DOI: 10.1016/j.msea.2022.144133
Google Scholar
[4]
Y. Wang, C. Yuan, Y.I. Xiao, X. Wen, B. Zhang, X. Gao, Y. Chen, S. Qiao, F. Wang, Probing temperature effects on the stacking fault energy of GH3536 superalloy using first-principles theory, Intermetallics 157 (2023) 107882.
DOI: 10.1016/j.intermet.2023.107882
Google Scholar
[5]
H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, C.Y. Jo, Effects of temperature and strain range on fatigue cracking behavior in Hastelloy X, Matter. Lett. 62 (2008) 4351-4353.
DOI: 10.1016/j.matlet.2008.07.032
Google Scholar
[6]
J. Kangazian, A. Kermanpur, M. Shamanian, F. Sadeghi, M. Badrossamay, E. Foroozmehr, Microstructure and hot tensile behavior of Hastelloy X superalloy laser powder-bed fusion-fabricated through different scanning patterns, Mater. Sci. Eng. A 867 (2023) 144717.
DOI: 10.1016/j.msea.2023.144717
Google Scholar
[7]
Ł. Rogal, Semi-solid processing of the CoCrCuFeNi high entropy alloy, Mater. Des. 119 (2017) 406-416.
DOI: 10.1016/j.matdes.2017.01.082
Google Scholar
[8]
M. Qi, B. Li, P. Zhang, Y. Kang, G. Zhang, J. Wang, Q. Deng, W. Jiang, B. Hao, J. Li, Improvement of mechanical properties of Al-Si-Cu alloy diecastings combined with Cd microalloying and semisolid forming, Mater. Sci. Eng. A 861(2022) 144312.
DOI: 10.1016/j.msea.2022.144312
Google Scholar
[9]
K. Niitsu Campo, C.C.D. Freitas, É.S.N. Lopes, S. Moon, R. Dippenaar, R. Caram, Microstructure and mechanical behavior of Ti-Cu alloys produced by semisolid processing, Trans. Nonferrous Met. Soc. China 32 (2022) 3578-3586.
DOI: 10.1016/s1003-6326(22)66040-0
Google Scholar
[10]
D.H. Kirkwood, M. Suery, P. Kapranos, H.V. Atkinson, K.P. Young, Semi-Solid Processing of Alloys, Springer, 2009.
Google Scholar
[11]
K. Wang, L. Wang, F. Li, Z. Zhang, R. Luo, Anisotropic microstructure and thixo-compression deformation behavior of extruded 7075 aluminum alloy in semi-solid state, Mater. Sci. Eng. A 833 (2022) 142514.
DOI: 10.1016/j.msea.2021.142514
Google Scholar
[12]
C. Chaussê De Freitas, R. Caram, K.N. Campo, Semisolid deformation behavior and processing of CoCrCuxFeNi high-entropy alloys, Intermetallics 150 (2022) 107682.
DOI: 10.1016/j.intermet.2022.107682
Google Scholar
[13]
H. Li, M. Cao, L. Niu, K. Huang, Q. Zhang, Establishment of macro-micro constitutive model and deformation mechanism of semi-solid Al6061, J. Alloys Compd. 854 (2021) 157124.
DOI: 10.1016/j.jallcom.2020.157124
Google Scholar
[14]
J. Jiang, G. Xiao, Y. Wang, Y. Liu, Y. Zhang, High temperature deformation behavior and microstructure evolution of wrought nickel-based superalloy GH4037 in solid and semi-solid states, Trans. Nonferrous Met. Soc. China 30 (2020) 710-726.
DOI: 10.1016/s1003-6326(20)65248-7
Google Scholar
[15]
W. Qu, J. Chen, Z. Li, M. Luo, H. Lu, X. Hu, Q. Zhu, Rheological modeling and simulation of semi-solid slurry based on experimental study, Scr. Mater. 220 (2022) 114932.
DOI: 10.1016/j.scriptamat.2022.114932
Google Scholar
[16]
Z. Ma, H. Zhang, H. Fu, Y. Yang, J. Wang, M. Du, H. Zhang, Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study, J. Mater. Sci. Technol. 100 (2022) 182-192.
DOI: 10.1016/j.jmst.2021.05.041
Google Scholar
[17]
J. Wu, Z. Xu, H. Qiao, J. Zhao, Z. Huang, Mechanical properties prediction of superalloy FGH4095 treated by laser shock processing based on machine learning, Matter. Lett. 297 (2021) 129970.
DOI: 10.1016/j.matlet.2021.129970
Google Scholar
[18]
X. Jiang, B. Jia, G. Zhang, C. Zhang, X. Wang, R. Zhang, H. Yin, X. Qu, Y. Song, L. Su, Z. Mi, L. Hu, H. Ma, A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data, Scr. Mater. 186 (2020) 272-277.
DOI: 10.1016/j.scriptamat.2020.03.064
Google Scholar
[19]
Y. Duan, L. Ma, H. Qi, R. Li, P. Li, Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5B alloy, Mater. Charact. 129 (2017) 353-366.
DOI: 10.1016/j.matchar.2017.05.026
Google Scholar
[20]
K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Effect of solution treatment on deep drawability of IN718 sheets: Experimental analysis and metallurgical characterization, Mater. Sci. Eng. A 727 (2018) 97-112.
DOI: 10.1016/j.msea.2018.04.110
Google Scholar
[21]
Z. Li, Q. Kang, G. Wang, X. Sui, Y. Liu, S. Luo, Microstructure evolution during hot-packed rolling and mechanical properties anisotropy of as-rolled network-structured TiBw/TA15 composites, Mater. Sci. Eng. A 849 (2022) 143518.
DOI: 10.1016/j.msea.2022.143518
Google Scholar