Semi-Solid Deformation Behavior, Flow Stress Prediction and Deformed Microstructure of GH3536 Superalloy

Article Preview

Abstract:

In current work, the deformation behavior and deformed microstructures of GH3536 superalloy in semi-solid state were investigated, and the semi-solid flow stress was predicted by artificial neural network (ANN) model. The semi-solid compression deformation was carried out at 1320-1350 °C, and the solid deformation behavior at 1200 °C was tested for comparison. The peak stress under 0.01-1 s-1 semi-solid deformation was 45.6-161.9 MPa. The peak stress decreased with the increase of deformation temperature and the decrease of strain rate. The ANN model could well describe semi-solid flow stress. During semi-solid deformation, the apparent viscosity dropped as shear rate increased. At high temperature and low strain rate, more liquid phase was distributed at grain boundaries. The solid grains coarsened as deformation temperature increased.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 347)

Pages:

147-155

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Iveković, M.L. Montero-Sistiaga, J. Vleugels, J. Kruth, K. Vanmeensel, Crack mitigation in Laser Powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach, J. Alloys Compd. 864 (2021) 158803.

DOI: 10.1016/j.jallcom.2021.158803

Google Scholar

[2] S. Zhang, J. Liu, X. Lin, Y. Huang, M. Wang, Y. Zhang, T. Qin, W. Huang, Effect of electrolyte solutions on the electrochemical dissolution behavior of additively manufactured Hastelloy X superalloy via laser solid forming, J. Alloys Compd. 878 (2021) 160395.

DOI: 10.1016/j.jallcom.2021.160395

Google Scholar

[3] Y. Zhao, B. Gong, Y. Wang, Y. Gu, Effects of microstructure anisotropy on dynamic fracture behaviors of a selective laser melting nickel-based superalloy, Mater. Sci. Eng. A 858 (2022) 144133.

DOI: 10.1016/j.msea.2022.144133

Google Scholar

[4] Y. Wang, C. Yuan, Y.I. Xiao, X. Wen, B. Zhang, X. Gao, Y. Chen, S. Qiao, F. Wang, Probing temperature effects on the stacking fault energy of GH3536 superalloy using first-principles theory, Intermetallics 157 (2023) 107882.

DOI: 10.1016/j.intermet.2023.107882

Google Scholar

[5] H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, C.Y. Jo, Effects of temperature and strain range on fatigue cracking behavior in Hastelloy X, Matter. Lett. 62 (2008) 4351-4353.

DOI: 10.1016/j.matlet.2008.07.032

Google Scholar

[6] J. Kangazian, A. Kermanpur, M. Shamanian, F. Sadeghi, M. Badrossamay, E. Foroozmehr, Microstructure and hot tensile behavior of Hastelloy X superalloy laser powder-bed fusion-fabricated through different scanning patterns, Mater. Sci. Eng. A 867 (2023) 144717.

DOI: 10.1016/j.msea.2023.144717

Google Scholar

[7] Ł. Rogal, Semi-solid processing of the CoCrCuFeNi high entropy alloy, Mater. Des. 119 (2017) 406-416.

DOI: 10.1016/j.matdes.2017.01.082

Google Scholar

[8] M. Qi, B. Li, P. Zhang, Y. Kang, G. Zhang, J. Wang, Q. Deng, W. Jiang, B. Hao, J. Li, Improvement of mechanical properties of Al-Si-Cu alloy diecastings combined with Cd microalloying and semisolid forming, Mater. Sci. Eng. A 861(2022) 144312.

DOI: 10.1016/j.msea.2022.144312

Google Scholar

[9] K. Niitsu Campo, C.C.D. Freitas, É.S.N. Lopes, S. Moon, R. Dippenaar, R. Caram, Microstructure and mechanical behavior of Ti-Cu alloys produced by semisolid processing, Trans. Nonferrous Met. Soc. China 32 (2022) 3578-3586.

DOI: 10.1016/s1003-6326(22)66040-0

Google Scholar

[10] D.H. Kirkwood, M. Suery, P. Kapranos, H.V. Atkinson, K.P. Young, Semi-Solid Processing of Alloys, Springer, 2009.

Google Scholar

[11] K. Wang, L. Wang, F. Li, Z. Zhang, R. Luo, Anisotropic microstructure and thixo-compression deformation behavior of extruded 7075 aluminum alloy in semi-solid state, Mater. Sci. Eng. A 833 (2022) 142514.

DOI: 10.1016/j.msea.2021.142514

Google Scholar

[12] C. Chaussê De Freitas, R. Caram, K.N. Campo, Semisolid deformation behavior and processing of CoCrCuxFeNi high-entropy alloys, Intermetallics 150 (2022) 107682.

DOI: 10.1016/j.intermet.2022.107682

Google Scholar

[13] H. Li, M. Cao, L. Niu, K. Huang, Q. Zhang, Establishment of macro-micro constitutive model and deformation mechanism of semi-solid Al6061, J. Alloys Compd. 854 (2021) 157124.

DOI: 10.1016/j.jallcom.2020.157124

Google Scholar

[14] J. Jiang, G. Xiao, Y. Wang, Y. Liu, Y. Zhang, High temperature deformation behavior and microstructure evolution of wrought nickel-based superalloy GH4037 in solid and semi-solid states, Trans. Nonferrous Met. Soc. China 30 (2020) 710-726.

DOI: 10.1016/s1003-6326(20)65248-7

Google Scholar

[15] W. Qu, J. Chen, Z. Li, M. Luo, H. Lu, X. Hu, Q. Zhu, Rheological modeling and simulation of semi-solid slurry based on experimental study, Scr. Mater. 220 (2022) 114932.

DOI: 10.1016/j.scriptamat.2022.114932

Google Scholar

[16] Z. Ma, H. Zhang, H. Fu, Y. Yang, J. Wang, M. Du, H. Zhang, Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study, J. Mater. Sci. Technol. 100 (2022) 182-192.

DOI: 10.1016/j.jmst.2021.05.041

Google Scholar

[17] J. Wu, Z. Xu, H. Qiao, J. Zhao, Z. Huang, Mechanical properties prediction of superalloy FGH4095 treated by laser shock processing based on machine learning, Matter. Lett. 297 (2021) 129970.

DOI: 10.1016/j.matlet.2021.129970

Google Scholar

[18] X. Jiang, B. Jia, G. Zhang, C. Zhang, X. Wang, R. Zhang, H. Yin, X. Qu, Y. Song, L. Su, Z. Mi, L. Hu, H. Ma, A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data, Scr. Mater. 186 (2020) 272-277.

DOI: 10.1016/j.scriptamat.2020.03.064

Google Scholar

[19] Y. Duan, L. Ma, H. Qi, R. Li, P. Li, Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5B alloy, Mater. Charact. 129 (2017) 353-366.

DOI: 10.1016/j.matchar.2017.05.026

Google Scholar

[20] K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Effect of solution treatment on deep drawability of IN718 sheets: Experimental analysis and metallurgical characterization, Mater. Sci. Eng. A 727 (2018) 97-112.

DOI: 10.1016/j.msea.2018.04.110

Google Scholar

[21] Z. Li, Q. Kang, G. Wang, X. Sui, Y. Liu, S. Luo, Microstructure evolution during hot-packed rolling and mechanical properties anisotropy of as-rolled network-structured TiBw/TA15 composites, Mater. Sci. Eng. A 849 (2022) 143518.

DOI: 10.1016/j.msea.2022.143518

Google Scholar