[1]
Z. Liu, Y. Li, J. Zhao, L. Fu, L. Li, K. Yu, X. Mao, P. Zhao, Research on Aluminum Alloy Materials and Application Technology for Automobile Lightweight. Materials China 41 (2022).
Google Scholar
[2]
A.E.W. Jarfors, Semisolid Casting of Metallic Parts and Structures, Encyclopedia of Materials: Metals and Alloys, 2021.
DOI: 10.1016/b978-0-12-819726-4.00052-1
Google Scholar
[3]
A.E.W. Jarfors, A Comparison between Semisolid Casting Methods for Aluminium Alloys. Metals (Basel) 10 10 (2020) 1368.
DOI: 10.3390/met10101368
Google Scholar
[4]
L. Cheng, H. Lu, M. Luo, X. Li, W. Zhang, Q. Zhu, The Effect of Solution Time on the Microstructure of A356.2 Aluminum Alloy Provided by Rheocasting and Squeeze Casting, Solid State Phenomena; 327 (2022) 189–196.
DOI: 10.4028/www.scientific.net/SSP.327.189
Google Scholar
[5]
K. Li, B. Xiao, Q. Wang, Residual Stresses in As-Quenched Aluminum Castings. SAE International Journal of Materials and Manufacturing, 1 (2009).
DOI: 10.4271/2008-01-1425
Google Scholar
[6]
L.A. Godlewski, X. Su, T.M. Pollock, J.E. Allison, The Effect of Aging on the Relaxation of Residual Stress in Cast Aluminum, Metall Mater Trans A, Sci, 44A, (2013).
DOI: 10.1007/s11661-013-1800-1
Google Scholar
[7]
I. Gattelli, G. Chiarmetta, M. Boschini, R. Moschini, M. Rosso, I. Peter, New Generation of Brake Callipers to Improve Competitiveness and Energy Savings in Very High Performance Cars, Solid State Phenomena; 217–218 (2014) 471-480.
DOI: 10.4028/www.scientific.net/SSP.217-218.471
Google Scholar
[8]
E. Fracchia, F.S. Gobber, C. Mus, Y. Kobayashi, M. Rosso, About Residual Stress State of Castings: The Case of HPDC Parts and Possible Advantages through Semi-Solid Processes, Solid State Phenomena, 327 (2022) 272-278.
DOI: 10.4028/www.scientific.net/SSP.327.272
Google Scholar
[9]
E. Fracchia, F.S. Gobber, M. Rosso, Y. Kobayashi, C. Mus, Residual Stress Analysis Applied to HPDC Alluminium Components: A Case Study, Metallurgia Italiana 113 (2021).
Google Scholar
[10]
S. Tahamtan, M.A. Golozar, F. Karimzadeh, B. Niroumand, Microstructure and Tensile Properties of Thixoformed A356 Alloy, Mater. Charact. 59 (2008).
DOI: 10.1016/j.matchar.2006.12.010
Google Scholar
[11]
M. Rosso, I. Peter, R. Villa, Effects of T5 and T6 Heat Treatments Applied to Rheocast A356 Parts for Automotive Applications. Solid State Phenomena, 141-143 (2008) 237-242.
DOI: 10.4028/www.scientific.net/SSP.141-143.237
Google Scholar
[12]
C. Park, S. Kim, Y. Kwon, Y. Lee, J. Lee, Mechanical and Corrosion Properties of Rheocast and Low-Pressure Cast A356-T6 Alloy, Materials Science and Engineering A, 391 1-2 (2005) 86-94.
DOI: 10.1016/j.msea.2004.08.056
Google Scholar
[13]
R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, J. Wannasin, Evolution of Microstructure in Semi-Solid Slurries of Rheocast Aluminum Alloy. Transactions of Nonferrous Metals Society of China (English Edition) 20 (2010).
DOI: 10.1016/S1003-6326(09)60353-8
Google Scholar
[14]
H. Möller, G. Govender, W.E. Stumpf, R.D. Knutsen, Influence of Temper Condition on Microstructure and Mechanical Properties of Semisolid Metal Processed Al-Si-Mg Alloy A356, International Journal of Cast Metals Research 22 (2009).
DOI: 10.1179/174313309X436682
Google Scholar
[15]
M. Vashista, S. Paul, Correlation between Full Width at Half Maximum (FWHM) of XRD Peak with Residual Stress on Ground Surfaces. Philosophical Magazine, 92 (2012) 4194-4204.
DOI: 10.1080/14786435.2012.704429
Google Scholar
[16]
A. Díaz, I. Cuesta, J.M. Alegre, A.M.P de Jesus, J.M. Manso, Residual Stresses in Cold-Formed Steel Members: Review of Measurement Methods and Numerical Modelling. Thin-Walled Structures 159 107335 (2021).
DOI: 10.1016/j.tws.2020.107335
Google Scholar