[1]
J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Res. Lett. 9 (2014) 1–33.
DOI: 10.1186/1556-276X-9-526
Google Scholar
[2]
Z.X. Lim, K.Y. Cheong, Nonvolatile Memory Device Based on Bipolar and Unipolar Resistive Switching in Bio-Organic Aloe Polysaccharides Thin Film, Adv. Mater. Technol. 3 (2018) 1–14.
DOI: 10.1002/admt.201800007
Google Scholar
[3]
V. Gupta, S. Kapur, S. Saurabh, A. Grover, Resistive Random Access Memory: A Review of Device Challenges, IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India). 37 (2020) 377–390.
DOI: 10.1080/02564602.2019.1629341
Google Scholar
[4]
A.A. Sivkov, Y. Xing, K.Y. Cheong, X. Zeng, F. Zhao, Investigation of honey thin film as a resistive switching material for nonvolatile memories, Mater. Lett. 271 (2020) 127796.
DOI: 10.1016/j.matlet.2020.127796
Google Scholar
[5]
N. Raeis-Hosseini, J.S. Lee, Resistive switching memory using biomaterials, J. Electroceramics. 39 (2017) 223–238.
DOI: 10.1007/s10832-017-0104-z
Google Scholar
[6]
K.Y. Cheong, I.A. Tayeb, F. Zhao, J.M. Abdullah, Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application, Nanotechnol. Rev. 10 (2021) 680–709.
DOI: 10.1515/ntrev-2021-0047
Google Scholar
[7]
A. Sawa, Resistive switching in transition metal oxides, Mater. Today. 11 (2008) 28–36.
DOI: 10.1016/S1369-7021(08)70119-6
Google Scholar
[8]
S. Yu, Neuro-inspired Computing Using Resistive Synaptic Devices, 2017.
DOI: 10.1007/978-3-319-54313-0
Google Scholar
[9]
J. Hur, Y.-C. Luo, A. Lu, T.-H. Wang, S. Li, A.I. Khan, S. Yu, Nonvolatile Capacitive Crossbar Array for In‐Memory Computing, Adv. Intell. Syst. 2100258 (2022) 2100258.
DOI: 10.1002/aisy.202100258
Google Scholar
[10]
S. Yu, P.Y. Chen, Emerging Memory Technologies: Recent Trends and Prospects, IEEE Solid-State Circuits Mag. 8 (2016) 43–56.
DOI: 10.1109/MSSC.2016.2546199
Google Scholar
[11]
F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications, Nanoscale Res. Lett. 15 (2020).
DOI: 10.1186/s11671-020-03299-9
Google Scholar
[12]
H. Cai, W. Kang, Y. Wang, L.A. De Barros Naviner, J. Yang, W. Zhao, High performance MRAM with spin-transfer-torque and voltage-controlled magnetic anisotropy effects, Appl. Sci. 7 (2017).
DOI: 10.3390/app7090929
Google Scholar
[13]
J. Ouyang, Two-terminal resistive switching memory devices with a polymer film embedded with nanoparticles, J. Mater. Chem. C. 3 (2015) 7243–7261.
DOI: 10.1039/c5tc01668a
Google Scholar
[14]
K. Krishnan, T. Tsuruoka, C. Mannequin, M. Aono, Mechanism for Conducting Filament Growth in Self-Assembled Polymer Thin Films for Redox-Based Atomic Switches, Adv. Mater. 28 (2016) 640–648.
DOI: 10.1002/adma.201504202
Google Scholar
[15]
H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices, Adv. Funct. Mater. 25 (2015) 3825–3831.
DOI: 10.1002/adfm.201501389
Google Scholar
[16]
D.B. Strukov, H. Kohlstedt, Resistive switching phenomena in thin films: Materials, devices, and applications, MRS Bull. 37 (2012) 108–114.
DOI: 10.1557/mrs.2012.2
Google Scholar
[17]
I.A. Tayeb, F. Zhao, J.M. Abdullah, K.Y. Cheong, Resistive switching behaviour in a polymannose film for multistate non-volatile memory application, J. Mater. Chem. C. 9 (2021) 1437–1450.
DOI: 10.1039/d0tc04655h
Google Scholar
[18]
F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance, Mater. Sci. Eng. R Reports. 83 (2014) 1–59.
DOI: 10.1016/j.mser.2014.06.002
Google Scholar
[19]
B. Sueoka, K.Y. Cheong, F. Zhao, Study of synaptic properties of honey thin film for neuromorphic systems, Mater. Lett. 308 (2022) 131169.
DOI: 10.1016/j.matlet.2021.131169
Google Scholar
[20]
C. Mukherjee, M.K. Hota, D. Naskar, S.C. Kundu, C.K. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors, Phys. Status Solidi Appl. Mater. Sci. 210 (2013) 1797–1805.
DOI: 10.1002/pssa.201329109
Google Scholar
[21]
Y.C. Chen, H.C. Yu, C.Y. Huang, W.L. Chung, S.L. Wu, Y.K. Su, Nonvolatile bio-memristor fabricated with egg albumen film, Sci. Rep. 5 (2015) 1–12.
DOI: 10.1038/srep10022
Google Scholar
[22]
H. Wang, B. Zhu, H. Wang, X. Ma, Y. Hao, X. Chen, Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin, Small. 12 (2016) 3360–3365.
DOI: 10.1002/smll.201600893
Google Scholar
[23]
X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes, ACS Appl. Mater. Interfaces. 8 (2016) 10954–10960.
DOI: 10.1021/acsami.5b10414
Google Scholar
[24]
Y. Zeng, B. Sun, H.Y. Yu, X. Wang, H. Peng, Y. Chen, S. Zhu, S. Mao, W. Hou, A sustainable biomemristive memory device based on natural collagen, Mater. Today Chem. 13 (2019) 18–24.
DOI: 10.1016/j.mtchem.2019.04.008
Google Scholar
[25]
B. Guo, B. Sun, W. Hou, Y. Chen, S. Zhu, S. Mao, L. Zheng, M. Lei, B. Li, G. Fu, A sustainable resistive switching memory device based on organic keratin extracted from hair, RSC Adv. 9 (2019) 12436–12440.
DOI: 10.1039/c8ra10643f
Google Scholar
[26]
A. Moudgil, N. Kalyani, G. Sinsinbar, S. Das, P. Mishra, S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device, ACS Appl. Mater. Interfaces. 10 (2018) 4866–4873.
DOI: 10.1021/acsami.7b15062
Google Scholar
[27]
B. Sun, X. Zhang, G. Zhou, P. Li, Y. Zhang, H. Wang, Y. Xia, Y. Zhao, An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel, Org. Electron. 42 (2017) 181–186.
DOI: 10.1016/j.orgel.2016.12.037
Google Scholar
[28]
A. Cifarelli, A. Parisini, T. Berzina, S. Iannotta, Organic memristive element with Chitosan as solid polyelectrolyte, Microelectron. Eng. 193 (2018) 65–70.
DOI: 10.1016/j.mee.2018.02.024
Google Scholar
[29]
X. Wang, S. Tian, B. Sun, X. Li, B. Guo, Y. Zeng, B. Li, W. Luo, From natural biomaterials to environment-friendly and sustainable nonvolatile memory device, Chem. Phys. 513 (2018) 7–12.
DOI: 10.1016/j.chemphys.2018.06.013
Google Scholar
[30]
B. Sun, S. Zhu, S. Mao, P. Zheng, Y. Xia, F. Yang, M. Lei, Y. Zhao, From dead leaves to sustainable organic resistive switching memory, J. Colloid Interface Sci. 513 (2018) 774–778.
DOI: 10.1016/j.jcis.2017.12.007
Google Scholar
[31]
K.M. Tran, D.P. Do, K.H. Ta Thi, N.K. Pham, Influence of top electrode on resistive switching effect of chitosan thin films, J. Mater. Res. 34 (2019) 3899–3906.
DOI: 10.1557/jmr.2019.353
Google Scholar
[32]
S.P. Park, Y.J. Tak, H.J. Kim, J.H. Lee, H. Yoo, H.J. Kim, Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory, Adv. Mater. 30 (2018) 1–8.
DOI: 10.1002/adma.201800722
Google Scholar
[33]
J. Xu, X. Zhao, Z. Wang, H. Xu, J. Hu, J. Ma, Y. Liu, Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics, Small. 15 (2019) 2–9.
DOI: 10.1002/smll.201803970
Google Scholar
[34]
X. Xing, M. Chen, Y. Gong, Z. Lv, S.T. Han, Y. Zhou, Building memory devices from biocomposite electronic materials, Sci. Technol. Adv. Mater. 21 (2020) 100–121.
DOI: 10.1080/14686996.2020.1725395
Google Scholar
[35]
Y. Park, J.S. Lee, Flexible Multistate Data Storage Devices Fabricated Using Natural Lignin at Room Temperature, ACS Appl. Mater. Interfaces. 9 (2017) 6207–6212.
DOI: 10.1021/acsami.6b14566
Google Scholar
[36]
S. Mao, B. Sun, T. Yu, W. Mao, S. Zhu, Y. Ni, H. Wang, Y. Zhao, Y. Chen, PH-Modulated memristive behavior based on an edible garlic-constructed bio-electronic device, New J. Chem. 43 (2019) 9634–9640.
DOI: 10.1039/c9nj02433f
Google Scholar
[37]
Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices, Phys. Chem. Chem. Phys. 17 (2015) 26833–26853.
DOI: 10.1039/c5cp04622j
Google Scholar