Bio-Organic Based Resistive Switching Random-Access Memory

Article Preview

Abstract:

A non-volatile memory is a solid-state device that can retain data even power supply is terminated. It is an essential data storage device that serves as a backbone for the advancement of Internet-of-Things. There are various emerging non-volatile memory technologies in different technology-readiness levels, to replace the existing technologies with limited memory density, operating speed, power consumption, manufacturability, and data security. Of the emerging technologies, resistive switching technology is one of the most promising next generation non-volatile random-access memories. The fundamental working principle of the resistive-switching random-access memory (ReRAM) is based on memristor characterises with metal-insulator-metal stacking structure. Same as other solid-state devices, ReRAM is also facing issue of electronic waste when the memory device is discarded. To overcome this issue, bio-organic materials as green and sustainable engineering materials have been used to fabricate ReRAM. In this review, development of bio-organic based ReRAM, in particular the resistive switching mechanisms and device performance, have been discussed and challenging and future applications of this memory have been provided.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 352)

Pages:

85-93

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Res. Lett. 9 (2014) 1–33.

DOI: 10.1186/1556-276X-9-526

Google Scholar

[2] Z.X. Lim, K.Y. Cheong, Nonvolatile Memory Device Based on Bipolar and Unipolar Resistive Switching in Bio-Organic Aloe Polysaccharides Thin Film, Adv. Mater. Technol. 3 (2018) 1–14.

DOI: 10.1002/admt.201800007

Google Scholar

[3] V. Gupta, S. Kapur, S. Saurabh, A. Grover, Resistive Random Access Memory: A Review of Device Challenges, IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India). 37 (2020) 377–390.

DOI: 10.1080/02564602.2019.1629341

Google Scholar

[4] A.A. Sivkov, Y. Xing, K.Y. Cheong, X. Zeng, F. Zhao, Investigation of honey thin film as a resistive switching material for nonvolatile memories, Mater. Lett. 271 (2020) 127796.

DOI: 10.1016/j.matlet.2020.127796

Google Scholar

[5] N. Raeis-Hosseini, J.S. Lee, Resistive switching memory using biomaterials, J. Electroceramics. 39 (2017) 223–238.

DOI: 10.1007/s10832-017-0104-z

Google Scholar

[6] K.Y. Cheong, I.A. Tayeb, F. Zhao, J.M. Abdullah, Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application, Nanotechnol. Rev. 10 (2021) 680–709.

DOI: 10.1515/ntrev-2021-0047

Google Scholar

[7] A. Sawa, Resistive switching in transition metal oxides, Mater. Today. 11 (2008) 28–36.

DOI: 10.1016/S1369-7021(08)70119-6

Google Scholar

[8] S. Yu, Neuro-inspired Computing Using Resistive Synaptic Devices, 2017.

DOI: 10.1007/978-3-319-54313-0

Google Scholar

[9] J. Hur, Y.-C. Luo, A. Lu, T.-H. Wang, S. Li, A.I. Khan, S. Yu, Nonvolatile Capacitive Crossbar Array for In‐Memory Computing, Adv. Intell. Syst. 2100258 (2022) 2100258.

DOI: 10.1002/aisy.202100258

Google Scholar

[10] S. Yu, P.Y. Chen, Emerging Memory Technologies: Recent Trends and Prospects, IEEE Solid-State Circuits Mag. 8 (2016) 43–56.

DOI: 10.1109/MSSC.2016.2546199

Google Scholar

[11] F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications, Nanoscale Res. Lett. 15 (2020).

DOI: 10.1186/s11671-020-03299-9

Google Scholar

[12] H. Cai, W. Kang, Y. Wang, L.A. De Barros Naviner, J. Yang, W. Zhao, High performance MRAM with spin-transfer-torque and voltage-controlled magnetic anisotropy effects, Appl. Sci. 7 (2017).

DOI: 10.3390/app7090929

Google Scholar

[13] J. Ouyang, Two-terminal resistive switching memory devices with a polymer film embedded with nanoparticles, J. Mater. Chem. C. 3 (2015) 7243–7261.

DOI: 10.1039/c5tc01668a

Google Scholar

[14] K. Krishnan, T. Tsuruoka, C. Mannequin, M. Aono, Mechanism for Conducting Filament Growth in Self-Assembled Polymer Thin Films for Redox-Based Atomic Switches, Adv. Mater. 28 (2016) 640–648.

DOI: 10.1002/adma.201504202

Google Scholar

[15] H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices, Adv. Funct. Mater. 25 (2015) 3825–3831.

DOI: 10.1002/adfm.201501389

Google Scholar

[16] D.B. Strukov, H. Kohlstedt, Resistive switching phenomena in thin films: Materials, devices, and applications, MRS Bull. 37 (2012) 108–114.

DOI: 10.1557/mrs.2012.2

Google Scholar

[17] I.A. Tayeb, F. Zhao, J.M. Abdullah, K.Y. Cheong, Resistive switching behaviour in a polymannose film for multistate non-volatile memory application, J. Mater. Chem. C. 9 (2021) 1437–1450.

DOI: 10.1039/d0tc04655h

Google Scholar

[18] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance, Mater. Sci. Eng. R Reports. 83 (2014) 1–59.

DOI: 10.1016/j.mser.2014.06.002

Google Scholar

[19] B. Sueoka, K.Y. Cheong, F. Zhao, Study of synaptic properties of honey thin film for neuromorphic systems, Mater. Lett. 308 (2022) 131169.

DOI: 10.1016/j.matlet.2021.131169

Google Scholar

[20] C. Mukherjee, M.K. Hota, D. Naskar, S.C. Kundu, C.K. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors, Phys. Status Solidi Appl. Mater. Sci. 210 (2013) 1797–1805.

DOI: 10.1002/pssa.201329109

Google Scholar

[21] Y.C. Chen, H.C. Yu, C.Y. Huang, W.L. Chung, S.L. Wu, Y.K. Su, Nonvolatile bio-memristor fabricated with egg albumen film, Sci. Rep. 5 (2015) 1–12.

DOI: 10.1038/srep10022

Google Scholar

[22] H. Wang, B. Zhu, H. Wang, X. Ma, Y. Hao, X. Chen, Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin, Small. 12 (2016) 3360–3365.

DOI: 10.1002/smll.201600893

Google Scholar

[23] X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes, ACS Appl. Mater. Interfaces. 8 (2016) 10954–10960.

DOI: 10.1021/acsami.5b10414

Google Scholar

[24] Y. Zeng, B. Sun, H.Y. Yu, X. Wang, H. Peng, Y. Chen, S. Zhu, S. Mao, W. Hou, A sustainable biomemristive memory device based on natural collagen, Mater. Today Chem. 13 (2019) 18–24.

DOI: 10.1016/j.mtchem.2019.04.008

Google Scholar

[25] B. Guo, B. Sun, W. Hou, Y. Chen, S. Zhu, S. Mao, L. Zheng, M. Lei, B. Li, G. Fu, A sustainable resistive switching memory device based on organic keratin extracted from hair, RSC Adv. 9 (2019) 12436–12440.

DOI: 10.1039/c8ra10643f

Google Scholar

[26] A. Moudgil, N. Kalyani, G. Sinsinbar, S. Das, P. Mishra, S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device, ACS Appl. Mater. Interfaces. 10 (2018) 4866–4873.

DOI: 10.1021/acsami.7b15062

Google Scholar

[27] B. Sun, X. Zhang, G. Zhou, P. Li, Y. Zhang, H. Wang, Y. Xia, Y. Zhao, An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel, Org. Electron. 42 (2017) 181–186.

DOI: 10.1016/j.orgel.2016.12.037

Google Scholar

[28] A. Cifarelli, A. Parisini, T. Berzina, S. Iannotta, Organic memristive element with Chitosan as solid polyelectrolyte, Microelectron. Eng. 193 (2018) 65–70.

DOI: 10.1016/j.mee.2018.02.024

Google Scholar

[29] X. Wang, S. Tian, B. Sun, X. Li, B. Guo, Y. Zeng, B. Li, W. Luo, From natural biomaterials to environment-friendly and sustainable nonvolatile memory device, Chem. Phys. 513 (2018) 7–12.

DOI: 10.1016/j.chemphys.2018.06.013

Google Scholar

[30] B. Sun, S. Zhu, S. Mao, P. Zheng, Y. Xia, F. Yang, M. Lei, Y. Zhao, From dead leaves to sustainable organic resistive switching memory, J. Colloid Interface Sci. 513 (2018) 774–778.

DOI: 10.1016/j.jcis.2017.12.007

Google Scholar

[31] K.M. Tran, D.P. Do, K.H. Ta Thi, N.K. Pham, Influence of top electrode on resistive switching effect of chitosan thin films, J. Mater. Res. 34 (2019) 3899–3906.

DOI: 10.1557/jmr.2019.353

Google Scholar

[32] S.P. Park, Y.J. Tak, H.J. Kim, J.H. Lee, H. Yoo, H.J. Kim, Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory, Adv. Mater. 30 (2018) 1–8.

DOI: 10.1002/adma.201800722

Google Scholar

[33] J. Xu, X. Zhao, Z. Wang, H. Xu, J. Hu, J. Ma, Y. Liu, Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics, Small. 15 (2019) 2–9.

DOI: 10.1002/smll.201803970

Google Scholar

[34] X. Xing, M. Chen, Y. Gong, Z. Lv, S.T. Han, Y. Zhou, Building memory devices from biocomposite electronic materials, Sci. Technol. Adv. Mater. 21 (2020) 100–121.

DOI: 10.1080/14686996.2020.1725395

Google Scholar

[35] Y. Park, J.S. Lee, Flexible Multistate Data Storage Devices Fabricated Using Natural Lignin at Room Temperature, ACS Appl. Mater. Interfaces. 9 (2017) 6207–6212.

DOI: 10.1021/acsami.6b14566

Google Scholar

[36] S. Mao, B. Sun, T. Yu, W. Mao, S. Zhu, Y. Ni, H. Wang, Y. Zhao, Y. Chen, PH-Modulated memristive behavior based on an edible garlic-constructed bio-electronic device, New J. Chem. 43 (2019) 9634–9640.

DOI: 10.1039/c9nj02433f

Google Scholar

[37] Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices, Phys. Chem. Chem. Phys. 17 (2015) 26833–26853.

DOI: 10.1039/c5cp04622j

Google Scholar