Mechanical and Structural Investigation of Zn-MnO2 Coating on Mildsteel

Article Preview

Abstract:

Failure in manufacturing industries is a worldwide concern and it occurs most often at elevated temperatures and pressure. Acid, gases, and steam are known to be corrosion and stress-induced propagators resulting in incessant catastrophes. More so, material failure can be due to the substrate material used in the coating while substrate failure can further be classified into the substrate morphology, surface chemistry as well as contamination. Thus, the study developed a multifaceted layer of zinc barrier coating via the electrodeposition technique and observe its response by characterizing the developed coating. The mild steel plate, Zn and MnO2 were procured and characterized according to the ASTM standard. Mild steel of dimension 60×30×2 mm was sectioned and polished using varying sizes of abrasives. The result of the coating thickness showed that Zn-6MnO2 had a weight gain of 0.30g. Zn-12MnO2 was observed to have excellent corrosion performance compared to the as-received and the other formulations of Zn-MnO2 with a corrosion resistance of 2.117 mm/year. The SEM image of Zn-MnO2 showed aggregates of clustered grains, thus, no possible fracture lines were observed on the coating surface. Zn-12MnO2 exhibited a hardness value of 252.72 BHN. Additionally, the EDS of the coatings revealed significant elements that helped in the corrosion performance and hardness properties of the coatings. Keywords: Electrodeposition, Corrosion, Zinc barrier coating, Hardness value, EDS analysis

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 365)

Pages:

21-32

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P.I. Popoola and O.S.I. Fayomi, An investigation of the properties of Zn coated mild steel, Int. J. Electrochem. Sci., 7 (2012) 6555–6570.

DOI: 10.1016/s1452-3981(23)19502-2

Google Scholar

[2] M. Storozhenko et al., Microstructure and Tribological Behavior of Plasma Sprayed (Ti, Cr) C-Ni Composite Coatings, Solid State Phenom., 355 (2024), 77–84.

DOI: 10.4028/p-2xixtj

Google Scholar

[3] K.K. Maniam and S. Paul, Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids, Appl. Sci., 10 (2020) 5321.

DOI: 10.3390/app10155321

Google Scholar

[4] J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochem. Eng. Asp., 607 (2020) 125498.

DOI: 10.1016/j.colsurfa.2020.125498

Google Scholar

[5] S. Saha, M. Johnson, F. Altayaran, Y. Wang, D. Wang, and Q. Zhang, Electrodeposition fabrication of chalcogenide thin films for photovoltaic applications, Electrochem, 1 (2020) 286–321.

DOI: 10.3390/electrochem1030019

Google Scholar

[6] J. Qin et al., Electrodeposition and mechanical properties of Ni-W matrix composite coatings with embedded amorphous boron particles, Int. J. Electrochem. Sci, 11 (2016) 9529–9541.

DOI: 10.20964/2016.11.58

Google Scholar

[7] E. Ünal, A. Yaşar, and İ. H. Karahan, A review of electrodeposited composite coatings with Ni–B alloy matrix, Mater. Res. Express, 6 (2019) 92004.

DOI: 10.1088/2053-1591/ab1811

Google Scholar

[8] A.D. Torkamani, M. Velashjerdi, A. Abbas, M. Bolourchi, and P. Maji, Electrodeposition of Nickel matrix composite coatings via various Boride particles: A review, J. Compos. Compd., 3 (2021) 106–113.

DOI: 10.52547/jcc.3.2.4

Google Scholar

[9] C.N. Panagopoulos, E. P. Georgiou, P. E Agathocleous, & K. I. Giannakopoulos, Mechanical behaviour of Zn–Fe alloy coated mild steel. Materials & Design, 30 (2009) 4267–4272.

DOI: 10.1016/j.matdes.2009.04.026

Google Scholar

[10] R.A. Jassim, M. S. Sando, and A. M. Farhan, Protection of Galvanized steel from corrosion in salt media using sulfur nanoparticles, Baghdad Sci. J., 19 (2022) 347.

DOI: 10.21123/bsj.2022.19.2.0347

Google Scholar

[11] N. LeBozec, D. Thierry, D. Persson, C. K. Riener, and G. Luckeneder, Influence of microstructure of zinc-aluminium-magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere, Surf. Coatings Technol., 374 (2019) 897–909.

DOI: 10.1016/j.surfcoat.2019.06.052

Google Scholar

[12] J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochem. Eng. Asp., 607 (2020) 25498.

DOI: 10.1016/j.colsurfa.2020.125498

Google Scholar

[13] A. Kumar and D. P. Sammaiah, Influence of process parameters on mechanical and metallurgical properties of zinc coating on mild steel during mechanical process, Curr. Res. Top. poweer, Nucl. Fuel Energy, SP-CRTPNFE, 2016 (2017).

DOI: 10.1016/j.matpr.2017.11.640

Google Scholar

[14] C. Qi, K. Dam-Johansen, C. E. Weinell, H. Bi, and H. Wu, Enhanced anticorrosion performance of zinc rich epoxy coatings modified with stainless steel flakes, Prog. Org. Coatings, 163 (2022) 106616.

DOI: 10.1016/j.porgcoat.2021.106616

Google Scholar

[15] O.P. Abioye, A. J. Musa, C.A. Loto, O.S.I. Fayomi, and G.P. Gaiya, Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications, J. Phys. Conf. Ser., 1378 (2019) 4.

DOI: 10.1088/1742-6596/1378/4/042051

Google Scholar

[16] M. Góral, B. Kościelniak, K. Ochał, T. Kubaszek, J. Jopek, and M. Drajewicz, The Structure of Boride Diffusion Coatings Produced on Selected Grades of Structural Steels, Solid State Phenom., 355 (2024) 95–100.

DOI: 10.4028/p-hvsj08

Google Scholar

[17] X. Shen, J. Sheng, Q. Zhang, Q. Xu, and D. Cheng, The corrosion behavior of Zn/graphene oxide composite coatings fabricated by direct current electrodeposition, J. Mater. Eng. Perform., 27 (2018) 3750–3761.

DOI: 10.1007/s11665-018-3461-0

Google Scholar

[18] X.L. Zhang, Y.H. Kim, and Y.S. Kang, Synthesis and properties of TiO2/ZnO core/shell nanomaterials, Solid State Phenom., 119 (2007) 239–242.

DOI: 10.4028/www.scientific.net/ssp.119.239

Google Scholar

[19] D. A. Mohsin, H. M. Lieth, and M. A. Jabbar, Effect of Hexagonal Boron Nitride Nanoparticles Additions on Corrosion Resistance for Zinc Coatings of Weathering Steel in Rainwater, Basrah J. Eng. Sci., 23 (2023), 1.

DOI: 10.33971/bjes.23.1.9

Google Scholar

[20] G. Gunawarman et al., Corrosion behavior of new beta type Ti-29Nb-13Ta-4.6 Zr alloy in simulated body fluid solution, Front. Bioeng. Biotechnol., 2016.

DOI: 10.3389/conf.fbioe.2016.01.01060

Google Scholar

[21] O. D. Akinfenwa, O. S. I. Fayomi, J. O. Atiba, and B. E. Anyaegbuna, "Development of starch-modified titanium oxide paired with zinc powder using the electrodeposition technique as a composite superhydrophobic coating for mild steel," Int. J. Adv. Manuf. Technol., (2023) 1–8.

DOI: 10.1007/s00170-023-12852-6

Google Scholar

[22] R. Darolia, Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects, Int. Mater. Rev., 58 (2013) 315–348.

DOI: 10.1179/1743280413y.0000000019

Google Scholar

[23] A. Mehta et al., Processing and Advancements in the development of thermal barrier coatings: A Review, Coatings, 12 (2022), 1318.

Google Scholar

[24] J. G. Thakare, C. Pandey, M. M. Mahapatra, and R. S. Mulik, Thermal barrier coatings—A state of the art review, Met. Mater. Int., 27 (2021) 1947–1968.

DOI: 10.1007/s12540-020-00705-w

Google Scholar

[25] K. Pélissier and D. Thierry, Powder and high-solid coatings as anticorrosive solutions for marine and offshore applications? A review, Coatings, 10 (2020) 916.

DOI: 10.3390/coatings10100916

Google Scholar

[26] S. K. Kyei, W. I. Eke, G. Darko, and O. Akaranta, Drying and adhesive properties of novel surface coatings derived from peanut skin extract and cashew nutshell liquid, Pigment Resin Technol., 2022.

DOI: 10.1108/prt-08-2021-0087

Google Scholar

[27] T. Best and V. J. Gelling, An Industrial Perspective on Challenges in Lifetime Prediction of Organic Coatings: A Century Retrospective, Corrosion, 79 (2023) 304-327.

DOI: 10.5006/4180

Google Scholar

[28] X. Wang, J. Pan, Q. Li, X. Dong, L. Shi, and S. Chang, Preparation, Corrosion Resistance, and Electrochemical Properties of MnO2/TiO2 Coating on Porous Titanium, Coatings, 12 (2022). 1381.

DOI: 10.3390/coatings12101381

Google Scholar

[29] Y. Bai, Z. Wang, X. Li, G. Huang, C. Li, and Y. Li, Microstructure and mechanical properties of Zn-Ni-Al2O3 composite coatings, Materials (Basel)., 11 (2018) 853.

DOI: 10.3390/ma11050853

Google Scholar

[30] L. R. Kanyane, K. Gandazha, O. S. I. Fayomi, and A. P. I. Popoola, Microstructural evolution and mechanical properties of Zn-Ni composite coating with Y2O3 as a dopant, Procedia Manuf., 35 (2019) 814–819.

DOI: 10.1016/j.promfg.2019.06.026

Google Scholar

[31] N. Boshkova, N. Tabakova, G. Atanassova, and N. Boshkov, Electrochemical obtaining and corrosion behavior of zinc-polyaniline (Zn-PANI) hybrid coatings, Coatings, 9 (2019) 487.

DOI: 10.3390/coatings9080487

Google Scholar

[32] T. Ramkumar, M. Selvakumar, M. Mohanraj, P. Chandramohan, and P. Narayanasamy, Microstructure and corrosion behavior of ZnO-Mg coating on AISI 4140 steel fabricated by spray coating, J. Mater. Eng. Perform., 29 (2020) 5796–5806.

DOI: 10.1007/s11665-020-05099-9

Google Scholar

[33] N. Van Phuong and S. Moon, Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy, Mater. Lett., 122(2014) 341–344.

DOI: 10.1016/j.matlet.2014.02.065

Google Scholar

[34] T.-L. Nguyen, T.-C. Cheng, J.-Y. Yang, C.-J. Pan, and T.-H. Lin, A zinc–manganese composite phosphate conversion coating for corrosion protection of AZ91D alloy: growth and characteristics, J. Mater. Res. Technol., 19 (2022) 2965–2980.

DOI: 10.1016/j.jmrt.2022.06.079

Google Scholar

[35] P. V. M. Dixini, B. B. Carvalho, G. R. Gonçalves, V. C. B. Pegoretti, and M. Freitas, Sol–gel synthesis of manganese oxide supercapacitor from manganese recycled from spent Zn–MnO 2 batteries using organic acid as a leaching agent, Ionics (Kiel)., 25 (2019) 4381–4392.

DOI: 10.1007/s11581-019-02995-6

Google Scholar

[36] A. H. Navidpour, A. Hosseinzadeh, J. L. Zhou, and Z. Huang, Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis, Catal. Rev., 65 (2023), 822–873.

DOI: 10.1080/01614940.2021.1983066

Google Scholar

[37] M.J. Rahman, S.R. Sen, M. Moniruzzaman, and K.M. Shorowordi, Morphology and properties of electrodeposited Zn-Ni alloy coatings on mild steel, J. Mech. Eng., 40(2009) 9-14.

DOI: 10.3329/jme.v40i1.3468

Google Scholar

[38] D. Rusu, G. Rusu, and D. Luca, Structural characteristics and optical properties of thermally oxidized zinc films, Acta Phys. Pol. A, 119 (2011) 850–856.

DOI: 10.12693/aphyspola.119.850

Google Scholar

[39] V. Fuster, A. V. Druker, A. Baruj, J. Malarría, and R. Bolmaro, Characterization of phases in an Fe–Mn–Si–Cr–Ni shape memory alloy processed by different thermomechanical methods, Mater. Charact., 109 (2015) 128–137.

DOI: 10.1016/j.matchar.2015.09.026

Google Scholar

[40] P. Sang et al., Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings, Metals (Basel)., 9 (2019) 1342.

DOI: 10.3390/met9121342

Google Scholar

[41] B. Bakhit and A. Akbari, Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni-Co/SiC composite coatings, Surf. Coatings Technol., 206 (2012) 4964–4975.

DOI: 10.1016/j.surfcoat.2012.05.122

Google Scholar