[1]
A.P.I. Popoola and O.S.I. Fayomi, An investigation of the properties of Zn coated mild steel, Int. J. Electrochem. Sci., 7 (2012) 6555–6570.
DOI: 10.1016/s1452-3981(23)19502-2
Google Scholar
[2]
M. Storozhenko et al., Microstructure and Tribological Behavior of Plasma Sprayed (Ti, Cr) C-Ni Composite Coatings, Solid State Phenom., 355 (2024), 77–84.
DOI: 10.4028/p-2xixtj
Google Scholar
[3]
K.K. Maniam and S. Paul, Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids, Appl. Sci., 10 (2020) 5321.
DOI: 10.3390/app10155321
Google Scholar
[4]
J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochem. Eng. Asp., 607 (2020) 125498.
DOI: 10.1016/j.colsurfa.2020.125498
Google Scholar
[5]
S. Saha, M. Johnson, F. Altayaran, Y. Wang, D. Wang, and Q. Zhang, Electrodeposition fabrication of chalcogenide thin films for photovoltaic applications, Electrochem, 1 (2020) 286–321.
DOI: 10.3390/electrochem1030019
Google Scholar
[6]
J. Qin et al., Electrodeposition and mechanical properties of Ni-W matrix composite coatings with embedded amorphous boron particles, Int. J. Electrochem. Sci, 11 (2016) 9529–9541.
DOI: 10.20964/2016.11.58
Google Scholar
[7]
E. Ünal, A. Yaşar, and İ. H. Karahan, A review of electrodeposited composite coatings with Ni–B alloy matrix, Mater. Res. Express, 6 (2019) 92004.
DOI: 10.1088/2053-1591/ab1811
Google Scholar
[8]
A.D. Torkamani, M. Velashjerdi, A. Abbas, M. Bolourchi, and P. Maji, Electrodeposition of Nickel matrix composite coatings via various Boride particles: A review, J. Compos. Compd., 3 (2021) 106–113.
DOI: 10.52547/jcc.3.2.4
Google Scholar
[9]
C.N. Panagopoulos, E. P. Georgiou, P. E Agathocleous, & K. I. Giannakopoulos, Mechanical behaviour of Zn–Fe alloy coated mild steel. Materials & Design, 30 (2009) 4267–4272.
DOI: 10.1016/j.matdes.2009.04.026
Google Scholar
[10]
R.A. Jassim, M. S. Sando, and A. M. Farhan, Protection of Galvanized steel from corrosion in salt media using sulfur nanoparticles, Baghdad Sci. J., 19 (2022) 347.
DOI: 10.21123/bsj.2022.19.2.0347
Google Scholar
[11]
N. LeBozec, D. Thierry, D. Persson, C. K. Riener, and G. Luckeneder, Influence of microstructure of zinc-aluminium-magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere, Surf. Coatings Technol., 374 (2019) 897–909.
DOI: 10.1016/j.surfcoat.2019.06.052
Google Scholar
[12]
J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochem. Eng. Asp., 607 (2020) 25498.
DOI: 10.1016/j.colsurfa.2020.125498
Google Scholar
[13]
A. Kumar and D. P. Sammaiah, Influence of process parameters on mechanical and metallurgical properties of zinc coating on mild steel during mechanical process, Curr. Res. Top. poweer, Nucl. Fuel Energy, SP-CRTPNFE, 2016 (2017).
DOI: 10.1016/j.matpr.2017.11.640
Google Scholar
[14]
C. Qi, K. Dam-Johansen, C. E. Weinell, H. Bi, and H. Wu, Enhanced anticorrosion performance of zinc rich epoxy coatings modified with stainless steel flakes, Prog. Org. Coatings, 163 (2022) 106616.
DOI: 10.1016/j.porgcoat.2021.106616
Google Scholar
[15]
O.P. Abioye, A. J. Musa, C.A. Loto, O.S.I. Fayomi, and G.P. Gaiya, Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications, J. Phys. Conf. Ser., 1378 (2019) 4.
DOI: 10.1088/1742-6596/1378/4/042051
Google Scholar
[16]
M. Góral, B. Kościelniak, K. Ochał, T. Kubaszek, J. Jopek, and M. Drajewicz, The Structure of Boride Diffusion Coatings Produced on Selected Grades of Structural Steels, Solid State Phenom., 355 (2024) 95–100.
DOI: 10.4028/p-hvsj08
Google Scholar
[17]
X. Shen, J. Sheng, Q. Zhang, Q. Xu, and D. Cheng, The corrosion behavior of Zn/graphene oxide composite coatings fabricated by direct current electrodeposition, J. Mater. Eng. Perform., 27 (2018) 3750–3761.
DOI: 10.1007/s11665-018-3461-0
Google Scholar
[18]
X.L. Zhang, Y.H. Kim, and Y.S. Kang, Synthesis and properties of TiO2/ZnO core/shell nanomaterials, Solid State Phenom., 119 (2007) 239–242.
DOI: 10.4028/www.scientific.net/ssp.119.239
Google Scholar
[19]
D. A. Mohsin, H. M. Lieth, and M. A. Jabbar, Effect of Hexagonal Boron Nitride Nanoparticles Additions on Corrosion Resistance for Zinc Coatings of Weathering Steel in Rainwater, Basrah J. Eng. Sci., 23 (2023), 1.
DOI: 10.33971/bjes.23.1.9
Google Scholar
[20]
G. Gunawarman et al., Corrosion behavior of new beta type Ti-29Nb-13Ta-4.6 Zr alloy in simulated body fluid solution, Front. Bioeng. Biotechnol., 2016.
DOI: 10.3389/conf.fbioe.2016.01.01060
Google Scholar
[21]
O. D. Akinfenwa, O. S. I. Fayomi, J. O. Atiba, and B. E. Anyaegbuna, "Development of starch-modified titanium oxide paired with zinc powder using the electrodeposition technique as a composite superhydrophobic coating for mild steel," Int. J. Adv. Manuf. Technol., (2023) 1–8.
DOI: 10.1007/s00170-023-12852-6
Google Scholar
[22]
R. Darolia, Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects, Int. Mater. Rev., 58 (2013) 315–348.
DOI: 10.1179/1743280413y.0000000019
Google Scholar
[23]
A. Mehta et al., Processing and Advancements in the development of thermal barrier coatings: A Review, Coatings, 12 (2022), 1318.
Google Scholar
[24]
J. G. Thakare, C. Pandey, M. M. Mahapatra, and R. S. Mulik, Thermal barrier coatings—A state of the art review, Met. Mater. Int., 27 (2021) 1947–1968.
DOI: 10.1007/s12540-020-00705-w
Google Scholar
[25]
K. Pélissier and D. Thierry, Powder and high-solid coatings as anticorrosive solutions for marine and offshore applications? A review, Coatings, 10 (2020) 916.
DOI: 10.3390/coatings10100916
Google Scholar
[26]
S. K. Kyei, W. I. Eke, G. Darko, and O. Akaranta, Drying and adhesive properties of novel surface coatings derived from peanut skin extract and cashew nutshell liquid, Pigment Resin Technol., 2022.
DOI: 10.1108/prt-08-2021-0087
Google Scholar
[27]
T. Best and V. J. Gelling, An Industrial Perspective on Challenges in Lifetime Prediction of Organic Coatings: A Century Retrospective, Corrosion, 79 (2023) 304-327.
DOI: 10.5006/4180
Google Scholar
[28]
X. Wang, J. Pan, Q. Li, X. Dong, L. Shi, and S. Chang, Preparation, Corrosion Resistance, and Electrochemical Properties of MnO2/TiO2 Coating on Porous Titanium, Coatings, 12 (2022). 1381.
DOI: 10.3390/coatings12101381
Google Scholar
[29]
Y. Bai, Z. Wang, X. Li, G. Huang, C. Li, and Y. Li, Microstructure and mechanical properties of Zn-Ni-Al2O3 composite coatings, Materials (Basel)., 11 (2018) 853.
DOI: 10.3390/ma11050853
Google Scholar
[30]
L. R. Kanyane, K. Gandazha, O. S. I. Fayomi, and A. P. I. Popoola, Microstructural evolution and mechanical properties of Zn-Ni composite coating with Y2O3 as a dopant, Procedia Manuf., 35 (2019) 814–819.
DOI: 10.1016/j.promfg.2019.06.026
Google Scholar
[31]
N. Boshkova, N. Tabakova, G. Atanassova, and N. Boshkov, Electrochemical obtaining and corrosion behavior of zinc-polyaniline (Zn-PANI) hybrid coatings, Coatings, 9 (2019) 487.
DOI: 10.3390/coatings9080487
Google Scholar
[32]
T. Ramkumar, M. Selvakumar, M. Mohanraj, P. Chandramohan, and P. Narayanasamy, Microstructure and corrosion behavior of ZnO-Mg coating on AISI 4140 steel fabricated by spray coating, J. Mater. Eng. Perform., 29 (2020) 5796–5806.
DOI: 10.1007/s11665-020-05099-9
Google Scholar
[33]
N. Van Phuong and S. Moon, Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy, Mater. Lett., 122(2014) 341–344.
DOI: 10.1016/j.matlet.2014.02.065
Google Scholar
[34]
T.-L. Nguyen, T.-C. Cheng, J.-Y. Yang, C.-J. Pan, and T.-H. Lin, A zinc–manganese composite phosphate conversion coating for corrosion protection of AZ91D alloy: growth and characteristics, J. Mater. Res. Technol., 19 (2022) 2965–2980.
DOI: 10.1016/j.jmrt.2022.06.079
Google Scholar
[35]
P. V. M. Dixini, B. B. Carvalho, G. R. Gonçalves, V. C. B. Pegoretti, and M. Freitas, Sol–gel synthesis of manganese oxide supercapacitor from manganese recycled from spent Zn–MnO 2 batteries using organic acid as a leaching agent, Ionics (Kiel)., 25 (2019) 4381–4392.
DOI: 10.1007/s11581-019-02995-6
Google Scholar
[36]
A. H. Navidpour, A. Hosseinzadeh, J. L. Zhou, and Z. Huang, Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis, Catal. Rev., 65 (2023), 822–873.
DOI: 10.1080/01614940.2021.1983066
Google Scholar
[37]
M.J. Rahman, S.R. Sen, M. Moniruzzaman, and K.M. Shorowordi, Morphology and properties of electrodeposited Zn-Ni alloy coatings on mild steel, J. Mech. Eng., 40(2009) 9-14.
DOI: 10.3329/jme.v40i1.3468
Google Scholar
[38]
D. Rusu, G. Rusu, and D. Luca, Structural characteristics and optical properties of thermally oxidized zinc films, Acta Phys. Pol. A, 119 (2011) 850–856.
DOI: 10.12693/aphyspola.119.850
Google Scholar
[39]
V. Fuster, A. V. Druker, A. Baruj, J. Malarría, and R. Bolmaro, Characterization of phases in an Fe–Mn–Si–Cr–Ni shape memory alloy processed by different thermomechanical methods, Mater. Charact., 109 (2015) 128–137.
DOI: 10.1016/j.matchar.2015.09.026
Google Scholar
[40]
P. Sang et al., Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings, Metals (Basel)., 9 (2019) 1342.
DOI: 10.3390/met9121342
Google Scholar
[41]
B. Bakhit and A. Akbari, Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni-Co/SiC composite coatings, Surf. Coatings Technol., 206 (2012) 4964–4975.
DOI: 10.1016/j.surfcoat.2012.05.122
Google Scholar