[1]
S. Etienne, L. David, Low Frequency Techniques: Special Applications, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press).
Google Scholar
[2]
G. Harrison, The Dynamic Properties of Supercooled Liquids, Academic Press, New York (1976).
Google Scholar
[3]
J. D. Ferry, Viscoelastic Properties of Polymers, 2nd edition, Wiley, New York (1970).
Google Scholar
[4]
B. E. Read, G. D. Dean, Determination of Dynamic Properties of Polymers and Composites, Halsted, New York (1978).
Google Scholar
[5]
L. B. Magalas, Introduction to Mechanical Spectroscopy, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press); L. B. Magalas, Mechanical Spectroscopy Fundamentals, in this volume.
DOI: 10.4028/www.scientific.net/ssp.89.1
Google Scholar
[6]
A. C. Ling, J. E. Willard, J. Phys. Chem. 72, 1918 (1968).
Google Scholar
[7]
T. Christensen, N. B. Olsen, Rev. Sci. Instrum. 66, 5019 (1995).
Google Scholar
[8]
H. Numakura, Mechanical Relaxation Due to Interstitial Solutes in Metals, in this volume.
Google Scholar
[9]
B. S. Berry, A. S. Nowick, Anelasticity and Internal Friction due to Point Defects in Crystals, in Physical Acoustics, W. P. Mason Ed., Vol. III, Part A, Academic Press, New York (1966).
Google Scholar
[10]
C. M. Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago Illinois, 1948.
Google Scholar
[11]
W. P. Mason, in Physical Acoustics, vol. III, Part B, Chapter 6, W. P. Mason ed., Academic Press, New York (1966).
Google Scholar
[12]
K. L. Ngai, Analogous Anomalous Properties of Relaxation and Diffusion in Different Complex Systems: Simultaneous Resolutions by the Coupling Model, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press).
Google Scholar
[13]
C. Wert, Determination of the Diffusion Coefficient of Impurities by Anelastic Methods, in Physical Acoustics, W. P Mason ed., Vol. III, Part A, Academic Press, New York (1966).
Google Scholar
[14]
S. Etienne, J. Perez, S. Peytavin, M. Ribes, J. Solid State Chemistry 92, 27 (1991).
Google Scholar
[15]
S. Etienne, J. Perez, A. Pradel, M. Ribes, in Proceedings of the 1st International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, G. B. Wright eds., J. Non-Cryst. Solids 131-133, 1072 (1991). [16] The Glass Transition and the Nature of the Glassy State, M. Goldstein and R. Simha eds., The New York Academy of Sciences, New York (1976).
Google Scholar
[17]
Proceedings of the 1st International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, G. B. Wright eds., J. Non-Cryst. Solids 131-133 (1991).
Google Scholar
[18]
Proceedings of the 2nd International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, E. Riande, G. B. Wright eds., J. Non-Cryst. Solids 172-174 (1994).
Google Scholar
[19]
Proceedings of the 3rd International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, E. Riande, M. D. Ingram eds., J. Non-Cryst. Solids 235-237 (1998).
Google Scholar
[20]
K. L. Ngai, Comments on Solid State Physics 9, 127 (1979).
Google Scholar
[21]
K. L. Ngai, Comments on Solid State Physics 9, 141 (1980).
Google Scholar
[22]
S. Etienne, J. de Physique IV, 2, C2-41 (1992).
Google Scholar
[23]
G. P. Johari, ibid. [16], pp.117-140.
Google Scholar
[24]
S. Etienne, L. David, M. Mitov, P. Sixou, K. L. Ngai, Macromolecules 28, 5758 (1995).
Google Scholar
[25]
A. Mermet, E. Duval, S. Etienne, C. Gsell, Polymer 37, 615 (1996)
Google Scholar
[26]
E. Muzeau, J. Y. Cavaillé, R. Vassoille, Macromolecules 25, 5108 (1992).
Google Scholar
[27]
S. Etienne, L. David, ibid. [19].
Google Scholar
[28]
C. A. Angell, ibid. [15], pp.13-31.
Google Scholar
[29]
S. Etienne, L. David, P. Sixou, C. Laye, J. de Physique IV, 6, C8-571 (1996).
DOI: 10.1051/jp4:19968123
Google Scholar
[30]
A. Sekkat, Thesis, Lyon, France, 1992.
Google Scholar
[31]
L. David, A. Sekkat, S. Etienne, ibid. [18].
Google Scholar
[32]
H. Fontaine, C. Morianez, Journal de Chimie Physique 68, 436 (1971).
Google Scholar
[33]
L. K. H. Van Beek, Dielectric Behavior of Heterogeneous Systems, Progress in Dielectrics, Vol. 7, Heywood Books, London (1967).
Google Scholar
[34]
S. Etienne, C. Stochmil, J. L. Bessède, J. Alloys and Compounds 310, 368-373 (2000).
DOI: 10.1016/s0925-8388(00)00951-8
Google Scholar
[35]
N. G. McCrum, J. Polym. Sci. XXXIV, 355 (1959).
Google Scholar
[36]
V. Villani, R. Pucciarello, G. Ajroldi, J. Polym. Sci.: Part B: Polymer Physics 29, 1255 (1991).
Google Scholar
[37]
M. Bée, Quasielastic Neutron Scattering, Principles and Applications in Solid State Chemistry, Biology and Material Science, Adam Hilger, Bristol (1998).
Google Scholar
[38]
M. Margulies, B. Sixou, L. David, G. Vigier, M. Albrand, R. Dolmazon, European Physical Journal E - Soft Matter. 3, 55 (2000).
Google Scholar
[39]
A. Faivre, G. Niquet, M. Maglione, J. Fornazero, J. F. Jal, L. David, European Physical Journal-Part B, B10, 277 (1999).
DOI: 10.1007/s100510050856
Google Scholar
[40]
B. Sixou, L. David, M. Margulies, J. Y. Cavaillé, G. Vigier, Molecular Simulation (in press).
Google Scholar
[41]
S. Etienne, L. David, N. Surovtev, E. Duval, J. Chem. Phys. 114, 4685 (2001).
Google Scholar
[42]
J. Wong, C. A. Angell, Glass Structure by Spectroscopy, Dekker, New York (1976).
Google Scholar
[43]
P. Lunkenheimer, A. Pimerov, M. Dressel, B. Gorshunov, U. Schneider, B. Sciener, R. Böhmer, A. Loidl, in Structure and Dynamics of Glasses and Glass Formers, MRS, Symposium Proceedings, vol. 455, p.47, Pittsbugh (1997).
Google Scholar