Mechanical Spectroscopy and other Relaxation Spectroscopies

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 89)

Pages:

31-66

Citation:

Online since:

February 2003

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2003 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Etienne, L. David, Low Frequency Techniques: Special Applications, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press).

Google Scholar

[2] G. Harrison, The Dynamic Properties of Supercooled Liquids, Academic Press, New York (1976).

Google Scholar

[3] J. D. Ferry, Viscoelastic Properties of Polymers, 2nd edition, Wiley, New York (1970).

Google Scholar

[4] B. E. Read, G. D. Dean, Determination of Dynamic Properties of Polymers and Composites, Halsted, New York (1978).

Google Scholar

[5] L. B. Magalas, Introduction to Mechanical Spectroscopy, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press); L. B. Magalas, Mechanical Spectroscopy – Fundamentals, in this volume.

DOI: 10.4028/www.scientific.net/ssp.89.1

Google Scholar

[6] A. C. Ling, J. E. Willard, J. Phys. Chem. 72, 1918 (1968).

Google Scholar

[7] T. Christensen, N. B. Olsen, Rev. Sci. Instrum. 66, 5019 (1995).

Google Scholar

[8] H. Numakura, Mechanical Relaxation Due to Interstitial Solutes in Metals, in this volume.

Google Scholar

[9] B. S. Berry, A. S. Nowick, Anelasticity and Internal Friction due to Point Defects in Crystals, in Physical Acoustics, W. P. Mason Ed., Vol. III, Part A, Academic Press, New York (1966).

Google Scholar

[10] C. M. Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago Illinois, 1948.

Google Scholar

[11] W. P. Mason, in Physical Acoustics, vol. III, Part B, Chapter 6, W. P. Mason ed., Academic Press, New York (1966).

Google Scholar

[12] K. L. Ngai, Analogous Anomalous Properties of Relaxation and Diffusion in Different Complex Systems: Simultaneous Resolutions by the Coupling Model, in Mechanical Spectroscopy, ed. by L. B. Magalas, Kluwer Academic Publishers, 2003 (in press).

Google Scholar

[13] C. Wert, Determination of the Diffusion Coefficient of Impurities by Anelastic Methods, in Physical Acoustics, W. P Mason ed., Vol. III, Part A, Academic Press, New York (1966).

Google Scholar

[14] S. Etienne, J. Perez, S. Peytavin, M. Ribes, J. Solid State Chemistry 92, 27 (1991).

Google Scholar

[15] S. Etienne, J. Perez, A. Pradel, M. Ribes, in Proceedings of the 1st International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, G. B. Wright eds., J. Non-Cryst. Solids 131-133, 1072 (1991). [16] The Glass Transition and the Nature of the Glassy State, M. Goldstein and R. Simha eds., The New York Academy of Sciences, New York (1976).

Google Scholar

[17] Proceedings of the 1st International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, G. B. Wright eds., J. Non-Cryst. Solids 131-133 (1991).

Google Scholar

[18] Proceedings of the 2nd International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, E. Riande, G. B. Wright eds., J. Non-Cryst. Solids 172-174 (1994).

Google Scholar

[19] Proceedings of the 3rd International Discussion Meeting on the Relaxation in Complex Systems, K. L. Ngai, E. Riande, M. D. Ingram eds., J. Non-Cryst. Solids 235-237 (1998).

Google Scholar

[20] K. L. Ngai, Comments on Solid State Physics 9, 127 (1979).

Google Scholar

[21] K. L. Ngai, Comments on Solid State Physics 9, 141 (1980).

Google Scholar

[22] S. Etienne, J. de Physique IV, 2, C2-41 (1992).

Google Scholar

[23] G. P. Johari, ibid. [16], pp.117-140.

Google Scholar

[24] S. Etienne, L. David, M. Mitov, P. Sixou, K. L. Ngai, Macromolecules 28, 5758 (1995).

Google Scholar

[25] A. Mermet, E. Duval, S. Etienne, C. Gsell, Polymer 37, 615 (1996)

Google Scholar

[26] E. Muzeau, J. Y. Cavaillé, R. Vassoille, Macromolecules 25, 5108 (1992).

Google Scholar

[27] S. Etienne, L. David, ibid. [19].

Google Scholar

[28] C. A. Angell, ibid. [15], pp.13-31.

Google Scholar

[29] S. Etienne, L. David, P. Sixou, C. Laye, J. de Physique IV, 6, C8-571 (1996).

DOI: 10.1051/jp4:19968123

Google Scholar

[30] A. Sekkat, Thesis, Lyon, France, 1992.

Google Scholar

[31] L. David, A. Sekkat, S. Etienne, ibid. [18].

Google Scholar

[32] H. Fontaine, C. Morianez, Journal de Chimie Physique 68, 436 (1971).

Google Scholar

[33] L. K. H. Van Beek, Dielectric Behavior of Heterogeneous Systems, Progress in Dielectrics, Vol. 7, Heywood Books, London (1967).

Google Scholar

[34] S. Etienne, C. Stochmil, J. L. Bessède, J. Alloys and Compounds 310, 368-373 (2000).

DOI: 10.1016/s0925-8388(00)00951-8

Google Scholar

[35] N. G. McCrum, J. Polym. Sci. XXXIV, 355 (1959).

Google Scholar

[36] V. Villani, R. Pucciarello, G. Ajroldi, J. Polym. Sci.: Part B: Polymer Physics 29, 1255 (1991).

Google Scholar

[37] M. Bée, Quasielastic Neutron Scattering, Principles and Applications in Solid State Chemistry, Biology and Material Science, Adam Hilger, Bristol (1998).

Google Scholar

[38] M. Margulies, B. Sixou, L. David, G. Vigier, M. Albrand, R. Dolmazon, European Physical Journal E - Soft Matter. 3, 55 (2000).

Google Scholar

[39] A. Faivre, G. Niquet, M. Maglione, J. Fornazero, J. F. Jal, L. David, European Physical Journal-Part B, B10, 277 (1999).

DOI: 10.1007/s100510050856

Google Scholar

[40] B. Sixou, L. David, M. Margulies, J. Y. Cavaillé, G. Vigier, Molecular Simulation (in press).

Google Scholar

[41] S. Etienne, L. David, N. Surovtev, E. Duval, J. Chem. Phys. 114, 4685 (2001).

Google Scholar

[42] J. Wong, C. A. Angell, Glass Structure by Spectroscopy, Dekker, New York (1976).

Google Scholar

[43] P. Lunkenheimer, A. Pimerov, M. Dressel, B. Gorshunov, U. Schneider, B. Sciener, R. Böhmer, A. Loidl, in Structure and Dynamics of Glasses and Glass Formers, MRS, Symposium Proceedings, vol. 455, p.47, Pittsbugh (1997).

Google Scholar