Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 94)

Pages:

203-216

Citation:

Online since:

June 2003

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2003 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Averback, Sintering and Deformation of Nano-grained Materials. Zeitschrift für Physik. D26, 84 (1993).

Google Scholar

[2] Ph. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Physical Review A13, 2287 (1976).

DOI: 10.1103/physreva.13.2287

Google Scholar

[3] A. Inoue, K. Hishimoto, Amorphous and Nanocrystalline Materials: Preparation, Properties and Applications. Springer (2001).

Google Scholar

[4] S.B. Qadri, J. Yang, J.B. Ratna, E.F. Skelton, J.Z. Hu, Pressure induced structural transition in nanometer size particles of PbS. Applied Physics Letters 69, 2205 (1996).

DOI: 10.1063/1.117166

Google Scholar

[5] M.R. Silvestri, J. Schroeder, The size dependence of the high-pressure phase stability of II-VI semiconductor nanocrystals. Journal of Physics: Condensed Matter 7, 8519 (1995).

DOI: 10.1088/0953-8984/7/45/007

Google Scholar

[6] S.H. Tolbert, A.P. Alivisatos, Size dependence of the solid-solid phase transition in CdSe nanocrystals. Journal of Physics 26, 56 (1993).

DOI: 10.1007/bf01429106

Google Scholar

[7] D. Wolf, K.L. Merkle, Correlation between the structure and energy of grain boundaries in metals. In: Materials Interfaces: Atomic Level Structure and Properties (Eds. D. Wolf and S. Yip, Chapman and Hall, London), 87 (1992).

Google Scholar

[8] J.T. Lue, A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599 (2001).

Google Scholar

[9] C.J. Choi, X.L. Dong, B.K. Kim, Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scripta Mater. 44, 2225 (2001).

DOI: 10.1016/s1359-6462(01)00750-3

Google Scholar

[10] J. Harada, K. Ohshima, X-ray diffraction study of fine gold particles prepared by gas evaporation technique. Surface Science 106, 51 (1981).

DOI: 10.1016/0039-6028(81)90180-1

Google Scholar

[11] C. Solliard, M. Flueli, Surface stresses and size effect on the lattice parameter in small particles of gold and platinum. Surface Science 156, 487 (1985).

DOI: 10.1016/0039-6028(85)90610-7

Google Scholar

[12] J. Woltersdorf, A.S. Nepijko, E. Pippel, Dependence of lattice parameters of small particles on the size of the nuclei. Surface Science 106, 64 (1981).

DOI: 10.1016/0039-6028(81)90182-5

Google Scholar

[13] P.A. Montano, G.K. Shenoy, E.E. Alp, W. Schulze, J. Urban, Structure of Copper Microclusters Isolated in Solid Argon. Physical Review Letters 56, 2076 (1986).

DOI: 10.1103/physrevlett.56.2076

Google Scholar

[14] S.H. Tolbert, A.P. Alivisatos, The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. Journal of Chemical Physics 102, 4642 (1995).

DOI: 10.1063/1.469512

Google Scholar

[15] Y.C. Lan, X.L. Chen, Y.P. Xu,Y.G. Cao, F. Huang, Synthesis and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Mat. Res. Bulletin 35, 2325 (2000).

DOI: 10.1016/s0025-5408(00)00447-5

Google Scholar

[16] F.W.C. Boswell, Precise Determination of Lattice Constants by Electron Diffraction and Variations in the Lattice Constants of Very Small Crystallites. Proceedings of the Physical Society (London) A64, 465 (1951).

DOI: 10.1088/0370-1298/64/5/305

Google Scholar

[17] Ch. Beck, K.H. Ehses, R. Hempelmann, Ch. Bruch, Gradients in structure and dynamics of Y2O nanoparticles as revealed by X-ray and Raman scattering. Scripta Mater. 44, 2127 (2001).

DOI: 10.1016/s1359-6462(01)00893-4

Google Scholar

[18] Y.H. Zhao, K. Zhang, K. Lu, Structure characteristics of nanocrystalline element selenium with different grain sizes. Phys. Rev. B. 56, 14322 (1997).

DOI: 10.1103/physrevb.56.14322

Google Scholar

[19] R.C. Brown, The fundamental concepts concerning surface tension and capillarity. Proc. Royal Soc. 59, 429 (1947).

DOI: 10.1088/0959-5309/59/3/310

Google Scholar

[20] R. Defay and I. Prigogine, Surface tension and adsorption. Longmans (1966).

Google Scholar

[21] R.C. Cammarata, Thermodynamic model for surface reconstruction based on surface stress effects. Surface Science Letters 273, L399 (1992).

DOI: 10.1016/0039-6028(92)90259-9

Google Scholar

[22] R.C. Cammarata, Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering A237, 180 (1997).

DOI: 10.1016/s0921-5093(97)00128-7

Google Scholar

[23] J.J. Gilman, Direct Measurements of the Surface Energies of Crystals. Journal of Applied Physics 31, 2208 (1960).

Google Scholar

[24] C.W. Mays, J.S. Vermaak, D. Kuhlmann-Wilsdorf, On surface stress and surface tension, II. Determination of the surface stress of gold. Surface Science 12, 134 (1968).

DOI: 10.1016/0039-6028(68)90119-2

Google Scholar

[25] R. Shuttleworth, The Surface Tension of Solids. Proceedings of the Physical Society (London) A63, 444 (1950).

Google Scholar

[26] A.M. Stoneham, Measurement of surface tension by lattice parameter changes: theory for facetted microcrystals. Journal of Physics C: Solid State Physics 10, 1175 (1977).

DOI: 10.1088/0022-3719/10/8/019

Google Scholar

[27] J.S. Vermaak, C.W. Mays, D. Kuhlmann-Wilsdorf, On surface stress and surface tension. I. Theoretical considerations. Surface Science 12, 128 (1968).

DOI: 10.1016/0039-6028(68)90118-0

Google Scholar

[28] J. -P. Borel, A. Chatelain, Surface stress and surface tension: Equilibrium and pressure in small particles. Surface Science 156, 572 (1985).

DOI: 10.1016/0039-6028(85)90226-2

Google Scholar

[29] B. Palosz, E. Grzanka, S. Gierlotka, S. Stel'makh, R. Pielaszek, W. Lojkowski,U. Bismayer, J. Neuefeind, H. -P. Weber, & W. Palosz. Phase Transitions (2002), in the press.

DOI: 10.1080/0141159031000076129

Google Scholar

[30] B. Palosz, E. Grzanka, S. Gierlotka, S. Stel'makh, R. Pielaszek, U. Bismayer, J. Neuefeind, H. -P. Weber, & W. Palosz. Acta Physica Polonica (A) 102, 57 (2002).

DOI: 10.12693/aphyspola.102.57

Google Scholar

[31] B. Palosz, E. Grzanka, S. Gierlotka, S. Stel'makh, R. Pielaszek, U. Bismayer, J. Neuefeind, H. -P. Weber, Th. Proffen, R. Von Dreele, & W. Palosz. Zeitschrift für Kristallographie 217, 497 (2002).

DOI: 10.1524/zkri.217.10.497.20795

Google Scholar

[32] D.L. Bish, J.E. Post, Modern Powder Diffraction. In: Reviews in Mineralogy 20. (Mineralogical Society of America, Washington DC, 1989).

Google Scholar

[33] R.A. Young, The Rietveld Method, (International Union of Crystallography, Oxford University Press, 1993).

Google Scholar

[34] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures. (John Wiley & Sons, 1954).

Google Scholar

[35] S.J.L. Billinge, M.F. Thorpe, Local Structure from Diffraction (Plenum Press, New York and London, 1998).

Google Scholar

[36] L. Loeffler, J. Weissmueller, Grain-boundary atomic structure in nanocrystalline palladium from X-ray atomic distribution functions. Phys. Rev. B 52, 7076 (1995).

DOI: 10.1103/physrevb.52.7076

Google Scholar

[37] X. Zhu, R. Birringer, U. Herr, H. Gleiter, X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Phys. Rev. B. 35, 9085 (1987).

DOI: 10.1103/physrevb.35.9085

Google Scholar

[38] B. Palosz, E. Grzanka, S. Stel'makh, S. Gierlotka, and W. Palosz, The traps of using conventional methodology of evaluation of powder diffractograms for determination of the lattice parameters of nanocrystals, J. Appl. Cryst., submitted.

DOI: 10.1515/nano.0047.00007

Google Scholar

[39] M.J. Howe, Interfaces in Materials (John Wiley and Sons, Inc., 1997).

Google Scholar

[40] P. Peterson, M. Gutmann, Th. Proffen, S.J.L. Billinge, PDFgetN, a user-friendly program to extract the total scattering structure function and pair-distribution function from neutron powder diffraction data. J. Appl. Cryst. 33, 1192 (2000).

DOI: 10.1107/s0021889800007123

Google Scholar