The Microstructure and Hardness of Al2O3 Particle Reinforced Composite

Article Preview

Abstract:

Aluminium alloys (Al2014 and Al2124 alloy) and their composites containing 10wt.% Al2O3 with 3 µm and 43 µm sizes of particles have been produced by powder metallurgy (PM) method and the microstructure and hardness were investigated. Scanning electron microscopy (SEM) investigation showed a nearly uniform distribution of the Al2O3 particles within the Al2124 alloy matrix although some porosities were found in the Al2014 alloy matrix. Furthermore, it was found that the macrohardness of Al2124 alloy composite improved highly in comparison to that of Al2014 alloy due to fine of microstructure and increased hardness. The hardnesses of both MMCs increased with increasing the particle sizes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Das, R. Behera, A. Datta, G. Majumdar, B. Oraon, G. Sutradhar, Experimental investigation on the effect of reinforcement particles on the forgeability and mechanical properties of aluminium metal matrix composites, Mater. Sci. &Appl. 1 (2010).

DOI: 10.4236/msa.2010.15045

Google Scholar

[2] M. Rahimian, N. Ehsani, N. Parvin, H. R. Rahavandi, The effect of sintering temperature and the amount of reinforcement on the properties of Al-Al2O3 composite, Mater. Des. 30 (2009) 3333-3337.

DOI: 10.1016/j.matdes.2008.11.027

Google Scholar

[3] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis and L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Proces. Tech. 142 (2003) 738-743.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[4] Y. Şahin, Introduction to Composite Materials, 2nd ed., Seçkin Publication, Ankara (2006).

Google Scholar

[5] Y. Şahin, Wear behavior of Al-Al2 O3 reinforced composites, Advanced Materials Research, 308-310 (2011) 1577-1581.

DOI: 10.4028/www.scientific.net/amr.308-310.1577

Google Scholar

[6] D.P. Mandal, S. Das, High stress wear behaviour of aluminium hard particle composites: Effect of experimental parameters, particle size and volume fraction, Tribol. Inter. 39-6 (2006) 461-490.

DOI: 10.1016/j.triboint.2005.03.003

Google Scholar

[7] S. Zhiqiang, Z. Di, L. Guobin, Evaluation of dry sliding wear behaviour of silicon particles reinforced aluminium matrix composites, Mater. & Des. 26 (2005) 454-458.

DOI: 10.1016/j.matdes.2004.07.026

Google Scholar

[8] J. Abenojar, F. Velasco, M.A. Martinez, Optimizing of processing parametres for the Al+10%B4C system obtained by MA, J. Mater. Process. Technol. 184 (2007) 441-446.

Google Scholar

[9] D. Mandal, B.K. Dutta, S.C. Panigrahi, Effect of wt. % reinforcement on microstructure and mechanical properties of Al-2Mg base short steel fiber composites, J. Mater. Proces. Technol. 198 (2008) 195-201.

DOI: 10.1016/j.jmatprotec.2007.06.074

Google Scholar

[10] A.A. Mazen, A.Y. Ahmed, Mechanical behaviour of Al-Al2O3 MMC manufactured by PM techniques Part-I-Scheame I Processing parametres, ASME International, J. Mater. Eng. &Perform. 7 (1998) 393-400.

Google Scholar

[11] H. Wang, R. Zhang, X. Hu, C.A. Wang, Y. Huang, Characterization of a powder metallurgy SiC/Cu-Al composite, J. Mater. Proces. Technol. 197 (1-3) (2008) 43-48.

DOI: 10.1016/j.jmatprotec.2007.06.002

Google Scholar

[12] R. Angers, M.R. Krisnadev, R. Tremblay, J. -F. Corriveau, D. Dube, Characterization of SiCp/2024 aluminium alloy composites prepared by mechanical processing in a low energy ball, Mater. Sci. &Eng. A 262 (1999) 9-15.

DOI: 10.1016/s0921-5093(98)01030-2

Google Scholar

[13] K.H. Min, S.P. Kang, D.G. Kim, Y.D. Kim, Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powder, J. Alloys & Comp. 400 (2005) 150-153.

DOI: 10.1016/j.jallcom.2005.03.070

Google Scholar

[14] K.H. Min, B. -H. Lee, S. -Y. Chang, Y.D. Kim, Mechanical properties of sintered 7xxx series Al/SiC composites, Mater. Lett. 61 (2007) 2544-2546.

DOI: 10.1016/j.matlet.2006.09.062

Google Scholar

[15] S.M. Zebarjad, S.A. Sajjadi, Microstructure evaluation of Al-Al2O3 composites produced by mechanical alloying method, Mater&Des. 27 (2006) 684-688.

DOI: 10.1016/j.matdes.2004.12.011

Google Scholar

[16] C.Y.H. Lim, S.C. Lim, M. Gupta, Wear behaviour of SiCp-reinforced magnesium matrix composites, Wear 255(2003) 629-637.

DOI: 10.1016/s0043-1648(03)00121-2

Google Scholar

[17] P.N. Bindumadhavan, T.K. Chia, M. Chandrasekaran, H.K. Wah, L.N. Lam, O. Prabhakar, Effect of particle-porosity clusters on tribological wear behaviour of A356-SiCp metal matrix composites, Mater. Sci. &Eng. A 315 (2001) 217-226.

DOI: 10.1016/s0921-5093(00)01989-4

Google Scholar

[18] J. -T. Zhang, L. -Sheng Liu, P. -C. Zhai, Z. -Y. Fu, Q. -J. Zhang, Effect of fabrication, process on the microstructure and dynamic compressive properties of SiCp/Al composites fabricated by spark sintering, Mater. Lett. 62 (2008) 443-460.

DOI: 10.1016/j.matlet.2007.04.118

Google Scholar

[19] G. Abouelmagd, Hot deformation and wear resistance of P/M aluminium metal matrix composites, J. Mater. Proces. Technol. 155-156 (2004) 1395-1401.

DOI: 10.1016/j.jmatprotec.2004.04.223

Google Scholar

[20] A. M. Al-Qutub, I. M. Allam, T. W. Qureshi, Effect of sub-micron Al2O3 concentration on dry wear properties of 6061 aluminium based composite, J. Mater. Proces. Technol. 172 (2006) 327-331.

DOI: 10.1016/j.jmatprotec.2005.10.022

Google Scholar

[21] I. Lan, Y. Yang, X. Li, Microstrucure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Mater. Sci. &Eng.A. 386 (2004) 287-290.

DOI: 10.1016/s0921-5093(04)00936-0

Google Scholar