Solvothermal Preparation and Thermal Phase Change Behaviors of Nanosized Tetragonal-Phase Silver Selenide (Ag2Se)

Article Preview

Abstract:

Nanocrystalline silver selenide (Ag2Se) with an average diameter of 100 nm were prepared by a facile solvothermal method. X-ray energy dispersive (EDS) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies confirmed that the products were pure Ag2Se. Room-temperature powder X-ray diffraction (XRD) measurements indicated that the as-prepared Ag2Se nanocrystals exhibit a metastable tetragonal polymorphic phase, rather than the common orthorhombic phase at room temperature. The variable-temperature XRD and differential scanning calorimetry (DSC) thermal analysis techniques were used to investigate the phase change behaviors of the tetragonal Ag2Se nanocrystals, and the results showed that the low-temperature tetragonal phase transforms to the high-temperature cubic phase at about 106 °C. This transition temperature is lower by ~30 °C than the orthorhombic-cubic transition temperature (133140 °C) previously reported for Ag2Se. Meanwhile, two exothermic peaks, loaded at 61 and 89 °C, respectively, were detected in the cooling DSC scan for the cubic to tetragonal phase transition, and the reason was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 850-851)

Pages:

128-131

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.E. Pingitore, B.F. Ponce, L. Estrada, J. Mater. Res. 8 (1993), pp.3126-3130.

Google Scholar

[2] P. Boolchand, W.J. Bresser, Nature, vol. 410 (2001), pp.1070-1073.

Google Scholar

[3] H. Billetter, U. Ruschewitz, Z. Anorg. Allg. Chem., vol. 634 (2008), pp.241-246.

Google Scholar

[4] C. Xiao, J. Xu, K. Li, et al: J. Am. Chem. Soc., vol. 134 (2012), pp.4287-4293.

Google Scholar

[5] Y. -P. Gu, R. Cui, Z.L. Zhang, et al: J. Am. Chem. Soc., vol. 134 (2012), pp.79-82.

Google Scholar

[6] M. Ferhat, J. Nagao, J. Appl. Phys. 88 (2000), pp.813-816.

Google Scholar

[7] D.T. Schoen, C. Xie, Y. Cui: J. Am. Chem. Soc., vol. 129 (2007), pp.4116-4117.

Google Scholar

[8] A. Husmann, J.B. Betts, G.S. Boebinger, et al: Nature 417 (2002), pp.421-424.

Google Scholar

[9] Y. Saito, M. Sato, M. Shiojiri: Thin Solid Films, vol. 79 (1981), pp.257-566.

Google Scholar

[10] A. Sahu, L. Qi, M.S. Kang, et al: J. Am. Chem. Soc., vol. 133 (2011), pp.6509-6512.

Google Scholar

[11] J.R. Günter, P. Keusch: Ultramicroscopy, vol. 49 (1993), pp.293-307.

Google Scholar

[12] T. Okabe, K. Ura: J. Appl. Cryst., vol. 27 (1994), pp.140-145.

Google Scholar

[13] H. Miki: Jpn. J. Appl. Phys., vol. 30 (1991), pp.1765-1769.

Google Scholar

[14] Y. Xia, Y. Xiong, B. Lim, et al: Chem. Int. Ed., vol. 48 (2009), pp.60-103.

Google Scholar

[15] J. Wang, K. Chen, M. Gong, et al: Nano Lett., vol. 13 (2013), pp.3996-4000.

Google Scholar

[16] R. de Ridder, S. Amelinck: Phys. Stat. Sol. (a), vol. 18 (1973), pp.99-107.

Google Scholar