[1]
А.P. Il'in, L.O. Root, and A.V. Mostovshchikov, The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178-1180.
DOI: 10.1134/s1063784212080129
Google Scholar
[2]
A.V. Korshunov, Influence of dispersion aluminum powders on the regularities of their interaction with nitrogen, Russ. J. Phis . Chem. 85 (2011) 1202-1210.
DOI: 10.1134/s0036024411070156
Google Scholar
[3]
K. Hauffe, Reactions in and on solids, U.S. Atomic Energy Commission, Division of Technical Information (1962).
Google Scholar
[4]
A.A. Gromov, U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim (2014).
DOI: 10.1002/9783527680696
Google Scholar
[5]
H. Ellern, Military and Civilian Pyrotechnics, Chemical Publisher (1968).
Google Scholar
[6]
T.A. Khabas, Solid-phase synthesis and sintering in oxide-metal mixtures of highly dispersed powders, Glass and Ceramics. 59 (2002) 404–408.
Google Scholar
[7]
A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735-738.
DOI: 10.4028/www.scientific.net/kem.685.735
Google Scholar
[8]
A.V. Mostovshchikov, A.P. Il'in, P. Yu. Chumerin, Yu.G. Yushkov, V.A. Vaulin, B.A. Alekseev, The Influence of Microwave Radiation on the Thermal Stability of Aluminum Nanopowder, Tech. Phys. Lett. 42 (2016) 344–346.
DOI: 10.1134/s1063785016040118
Google Scholar
[9]
A.V. Mostovshchikov, A.P. Ilyin, A.A. Azanov, I.S. Egorov, The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam, Key Eng. Mat. 685 (2016) 639-642.
DOI: 10.4028/www.scientific.net/kem.685.639
Google Scholar
[10]
V.V. Smirnova, A.P. Ilyin, A.S. Brichkov, A.V. Zabolotskaya, The Electric Field and Ultrasonic Treatment Casing of Titanium Dioxide, Key Eng. Mat. 670 (2016) 3-8.
DOI: 10.4028/www.scientific.net/kem.670.3
Google Scholar
[11]
I. Egorov, V. Esipov, G. Remnev et al. A high-repetition rate pulsed electron accelerator, IEEE Transactions on Dielectrics and Electrical Insulation, 20 (2013) 1334–1339.
DOI: 10.1109/tdei.2013.6571453
Google Scholar
[12]
W.W. Wendlandt, Thermal Methods of Analysis. NY, John Wiley & Sons (1974).
Google Scholar
[13]
E.M. Ustinova, Y.A. Oskina, E.G. Pakrieva, Investigation of the Influence of Matrix Components of Gold Mineral Resources on the Electrochemical Determination of Pt and Re, Key Eng. Mat. 685 (2016) 748-753.
DOI: 10.4028/www.scientific.net/kem.685.748
Google Scholar
[14]
D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical Activity of Methionine at Graphite Electrode Modified with Gold Nanoparticles, Key Eng. Mat. 685 (2016) 563-568.
DOI: 10.4028/www.scientific.net/kem.685.563
Google Scholar
[15]
D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical Activity of Glutathion at a Graphite Electrode Modified Gold Nanoparticle / Oriental Journal of Chemistry. 31 (2015) 837-844.
DOI: 10.13005/ojc/310226
Google Scholar
[16]
A. Korshunov, M. Heyrovský, Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochimica Acta. 54 (2009) 6264-6268.
DOI: 10.1016/j.electacta.2009.05.084
Google Scholar
[17]
Ch. Genzel, A Study of X-Ray Residual Stress Gradient Analysis in Thin Layers with Strong Fibre Texture, Phys. stat. sol. (a). 165 (1998) 347–360.
DOI: 10.1002/(sici)1521-396x(199802)165:2<347::aid-pssa347>3.0.co;2-k
Google Scholar
[18]
A.P. Il'in, A.V. Mostovshchikov, and N.A. Timchenko, Phase Formation Sequence in Combustion of Pressed Aluminum Nanopowder in Air Studied by Synchrotron Radiation, Combust. Explo. Shock. 49 (2013) 320–324.
DOI: 10.1134/s0010508213030088
Google Scholar