[1]
J. Yanhua, Q. Weihong, L. Zongshi, and C. Lubai, A study on the modified lignosulfonate from lignin,, Energy Sources, 26(4) (2004) 409–414.
DOI: 10.1080/00908310490281528
Google Scholar
[2]
Y. Jiao, Z. Xu, W. Qiao, and Z. Li, Research interfacial properties of the novel lignosulfonates,, Energy Sources, Part A Recover. Util. Environ. Eff., 29(15) (2007) 1425–1432.
DOI: 10.1080/00908310600710699
Google Scholar
[3]
N. I. Prakoso, S. Purwono, and Rochmadi, Synthesis of sodium lignosulphonate from oil palm empty fruit bunches's lignin,, AIP Conf. Proc., 1823 (2017) 1–6.
DOI: 10.1063/1.4978110
Google Scholar
[4]
S. Priyanto, S. Suherman, I. Istadi, A. Nugroho, H. A. Aji, and B. Prmaudono, Preliminary study of development surfactant sodium lignosulfonate ( SLS ) from waste biomass in the application of enhanced oil recovery ( EOR ) yield increase in production for crude oil Indonesia,, Adv. Mater. Lett., 23(6) (2017).
DOI: 10.1166/asl.2017.8837
Google Scholar
[5]
D. Yang, X. Qiu, M. Zhou, and H. Lou, Properties of sodium lignosulfonate as dispersant of coal water slurry,, Energy Convers. Manag., 48(9) (2007) 2433–2438.
DOI: 10.1016/j.enconman.2007.04.007
Google Scholar
[6]
M. Zhou, Q. Kong, B. Pan, X. Qiu, D. Yang, and H. Lou, Evaluation of treated black liquor used as dispersant of concentrated coal-water slurry,, Fuel, 89(3) (2010) 716–723.
DOI: 10.1016/j.fuel.2009.09.015
Google Scholar
[7]
Y. Qin, D. Yang, W. Guo, and X. Qiu, Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry,, J. Ind. Eng. Chem., 27 (2015) 192–200.
DOI: 10.1016/j.jiec.2014.12.034
Google Scholar
[8]
D. Yang, H. Li, Y. Qin, R. Zhong, M. Bai, and X. Q. Qiu, Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant,, J. Dispers. Sci. Technol., 36(4) (2015) 532–539.
DOI: 10.1080/01932691.2014.916221
Google Scholar
[9]
A. Kamoun, A. Jelidi, and M. Chaabouni, Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer–water reducer for cement,, Cem. Concr. Res., 33 (2003) 995–1003.
DOI: 10.1016/s0008-8846(02)01098-0
Google Scholar
[10]
X. Ouyang, L. Ke, X. Qiu, Y. Guo, and Y. Pang, Sulfonation of alkali lignin and its potential use in dispersant for cement,, J. Dispers. Sci. Technol., 30(1) (2009) 1–6.
DOI: 10.1080/01932690802473560
Google Scholar
[11]
Y. Matsushita and S. Yasuda, Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin,, Bioresour. Technol., 96(4) (2005) 465–470.
DOI: 10.1016/j.biortech.2004.05.023
Google Scholar
[12]
G. Syahbirin, A. A. Darwis, A. Suryani, and W. Syafii, Potential of lignosulphonate of eucalyptus lignin from pulp plant as dispersant in gypsum paste,, Procedia Chem., 4 (2012) 343–351.
DOI: 10.1016/j.proche.2012.06.048
Google Scholar
[13]
M. F. Mady, A. A. El-Kateb, I. F. Zeid, and K. B. Jorgensen, Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media,, J. Chem., 2013 (2013).
DOI: 10.1155/2013/364036
Google Scholar
[14]
F. F. P. Santos, S. Rodrigues, and F. a. N. Fernandes, Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis,, Fuel Process. Technol., 90(2) (2009) 312–316.
DOI: 10.1016/j.fuproc.2008.09.010
Google Scholar
[15]
A. Ma'ruf, B. Pramudono, and N. Aryanti, Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted,, AIP Conf. Proc., 1823 (2017), 2–7.
DOI: 10.1063/1.4978086
Google Scholar
[16]
A. Ma'ruf, B. Pramudono, and N. Aryanti, Optimization of lignin extraction from rice husk by alkaline hydrogen peroxide using response surface methodology,, Rasayan J. Chem., 10(2) (2017) 407–414.
DOI: 10.7324/rjc.2017.1021667
Google Scholar
[17]
M. R. Kasaai, Input power-mechanism relationship for ultrasonic irradiation : Food and polymer applications,, Nat. Sci., 5(8) (2013) 14–22.
DOI: 10.4236/ns.2013.58a2003
Google Scholar
[18]
A. Kalva, T. Sivasankar, and V. S. Moholkar, Physical mechanism of ultrasound-assisted synthesis of biodiesel,, Ind. Eng. Chem. Res., 48(1) (2009) 534–544.
DOI: 10.1021/ie800269g
Google Scholar
[19]
G. Price, Ultrasonically enhanced polymer synthesis,, Ultrason. Sonochem., 3(3) (1996) S229–S238.
Google Scholar