Synthesis of Natural Surfactant of Sodium Lignosulfonate from Rice Husk Lignin by Ultrasound Assisted - Sulfonation

Article Preview

Abstract:

Sodium lignosulfonate (SLS) is one of natural surfactant that can be modified from lignin. The utilization of natural surfactant of SLS is widely studied by researchers. This paper will study the synthesis of a natural surfactant of SLS from rice husk lignin by ultrasound assisted – sulfonation and the characteristics of SLS based on FTIR spectra. The reaction was carried out at the temperature of 60 °C and the time of 30 minutes. From the experiment can be concluded that sulfonation process with ultrasonic irradiation has advantages compared with conventional heating, i.e. lower temperature, shorter time and higher yield.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yanhua, Q. Weihong, L. Zongshi, and C. Lubai, A study on the modified lignosulfonate from lignin,, Energy Sources, 26(4) (2004) 409–414.

DOI: 10.1080/00908310490281528

Google Scholar

[2] Y. Jiao, Z. Xu, W. Qiao, and Z. Li, Research interfacial properties of the novel lignosulfonates,, Energy Sources, Part A Recover. Util. Environ. Eff., 29(15) (2007) 1425–1432.

DOI: 10.1080/00908310600710699

Google Scholar

[3] N. I. Prakoso, S. Purwono, and Rochmadi, Synthesis of sodium lignosulphonate from oil palm empty fruit bunches's lignin,, AIP Conf. Proc., 1823 (2017) 1–6.

DOI: 10.1063/1.4978110

Google Scholar

[4] S. Priyanto, S. Suherman, I. Istadi, A. Nugroho, H. A. Aji, and B. Prmaudono, Preliminary study of development surfactant sodium lignosulfonate ( SLS ) from waste biomass in the application of enhanced oil recovery ( EOR ) yield increase in production for crude oil Indonesia,, Adv. Mater. Lett., 23(6) (2017).

DOI: 10.1166/asl.2017.8837

Google Scholar

[5] D. Yang, X. Qiu, M. Zhou, and H. Lou, Properties of sodium lignosulfonate as dispersant of coal water slurry,, Energy Convers. Manag., 48(9) (2007) 2433–2438.

DOI: 10.1016/j.enconman.2007.04.007

Google Scholar

[6] M. Zhou, Q. Kong, B. Pan, X. Qiu, D. Yang, and H. Lou, Evaluation of treated black liquor used as dispersant of concentrated coal-water slurry,, Fuel, 89(3) (2010) 716–723.

DOI: 10.1016/j.fuel.2009.09.015

Google Scholar

[7] Y. Qin, D. Yang, W. Guo, and X. Qiu, Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry,, J. Ind. Eng. Chem., 27 (2015) 192–200.

DOI: 10.1016/j.jiec.2014.12.034

Google Scholar

[8] D. Yang, H. Li, Y. Qin, R. Zhong, M. Bai, and X. Q. Qiu, Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant,, J. Dispers. Sci. Technol., 36(4) (2015) 532–539.

DOI: 10.1080/01932691.2014.916221

Google Scholar

[9] A. Kamoun, A. Jelidi, and M. Chaabouni, Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer–water reducer for cement,, Cem. Concr. Res., 33 (2003) 995–1003.

DOI: 10.1016/s0008-8846(02)01098-0

Google Scholar

[10] X. Ouyang, L. Ke, X. Qiu, Y. Guo, and Y. Pang, Sulfonation of alkali lignin and its potential use in dispersant for cement,, J. Dispers. Sci. Technol., 30(1) (2009) 1–6.

DOI: 10.1080/01932690802473560

Google Scholar

[11] Y. Matsushita and S. Yasuda, Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin,, Bioresour. Technol., 96(4) (2005) 465–470.

DOI: 10.1016/j.biortech.2004.05.023

Google Scholar

[12] G. Syahbirin, A. A. Darwis, A. Suryani, and W. Syafii, Potential of lignosulphonate of eucalyptus lignin from pulp plant as dispersant in gypsum paste,, Procedia Chem., 4 (2012) 343–351.

DOI: 10.1016/j.proche.2012.06.048

Google Scholar

[13] M. F. Mady, A. A. El-Kateb, I. F. Zeid, and K. B. Jorgensen, Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media,, J. Chem., 2013 (2013).

DOI: 10.1155/2013/364036

Google Scholar

[14] F. F. P. Santos, S. Rodrigues, and F. a. N. Fernandes, Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis,, Fuel Process. Technol., 90(2) (2009) 312–316.

DOI: 10.1016/j.fuproc.2008.09.010

Google Scholar

[15] A. Ma'ruf, B. Pramudono, and N. Aryanti, Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted,, AIP Conf. Proc., 1823 (2017), 2–7.

DOI: 10.1063/1.4978086

Google Scholar

[16] A. Ma'ruf, B. Pramudono, and N. Aryanti, Optimization of lignin extraction from rice husk by alkaline hydrogen peroxide using response surface methodology,, Rasayan J. Chem., 10(2) (2017) 407–414.

DOI: 10.7324/rjc.2017.1021667

Google Scholar

[17] M. R. Kasaai, Input power-mechanism relationship for ultrasonic irradiation : Food and polymer applications,, Nat. Sci., 5(8) (2013) 14–22.

DOI: 10.4236/ns.2013.58a2003

Google Scholar

[18] A. Kalva, T. Sivasankar, and V. S. Moholkar, Physical mechanism of ultrasound-assisted synthesis of biodiesel,, Ind. Eng. Chem. Res., 48(1) (2009) 534–544.

DOI: 10.1021/ie800269g

Google Scholar

[19] G. Price, Ultrasonically enhanced polymer synthesis,, Ultrason. Sonochem., 3(3) (1996) S229–S238.

Google Scholar