Fabrication and Stabilization of Poly(Acrylonitrile-сo-Methyl Acrylate) Nanofibers

Article Preview

Abstract:

In present study, poly (acrylonitrile-co-methyl acrylate) nanofibers were fabricated via electrospinning method and stabilized at elevated temperature in air. Electrospinning processing parameters i.e. solution concentration, solution flow rate and applied voltage were optimized. Fiber morphology and polydispersity index of fiber size was assessed from scanning electron microscope (SEM) images. Selected nanofiber was then used to study effect of stabilization time and stabilization temperature on fiber morphology, change in chemical structure and aromatization index (AI) using Fourier transform infrared spectroscopy and differential scanning calorimetry. SEM images showed drastic morphological change of stabilized fibers compared to the as spun precursor. AI value increased as stabilization time and temperature increased and reaching maximum value of 98%. This indicated high cyclization of the aromatic ring in fiber structure. Current finding is critical for carbonization process and preparation of carbon nanofibers from PAN copolymer in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hao, H. Lan, C. Kuang, H. Wang, L. Guo, Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers, Carbon N. Y. 128 (2018) 224–230.

DOI: 10.1016/j.carbon.2017.11.064

Google Scholar

[2] D.B. Thakur, R.M. Tiggelaar, J.G.E. Gardeniers, L. Lefferts, K. Seshan, Carbon nanofiber based catalyst supports to be used in microreactors: Synthesis and characterization, Chem. Eng. J. 160 (2010) 899–908.

DOI: 10.1016/j.cej.2010.01.005

Google Scholar

[3] X. Gao, G. Liu, Q. Wei, G. Yang, M. Masaki, X. Peng, R. Yang, N. Tsubaki, Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming, Int. J. Hydrogen Energy. 42 (2017) 16547–16556.

DOI: 10.1016/j.ijhydene.2017.05.164

Google Scholar

[4] W.K. Chee, H.N. Lim, Z. Zainal, I. Harrison, Y. Andou, N.M. Huang, M. Altarawneh, Z.T. Jiang, Electrospun graphene nanoplatelets-reinforced carbon nanofibers as potential supercapacitor electrode, Mater. Lett. 199 (2017) 200–203.

DOI: 10.1016/j.matlet.2017.04.086

Google Scholar

[5] J. Yan, J.H. Choi, Y.G. Jeong, Freestanding supercapacitor electrode applications of carbon nanofibers based on polyacrylonitrile and polyhedral oligomeric silsesquioxane, Mater. Des. 139 (2018) 72–80.

DOI: 10.1016/j.matdes.2017.10.071

Google Scholar

[6] S. a. Manafi, S.H. Badiee, Production of Carbon Nanofibers Using a CVD Method with Lithium Fluoride as a Supported Cobalt Catalyst, Res. Lett. Mater. Sci. 2008 (2008) 1–5.

DOI: 10.1155/2008/850975

Google Scholar

[7] S. Arbab, A. Teimoury, H. Mirbaha, D.C. Adolphe, B. Noroozi, P. Nourpanah, Optimum stabilization processing parameters for polyacrylonitrile-based carbon nanofibers and their difference with carbon (micro) fibers, Polym. Degrad. Stab. 142 (2017).

DOI: 10.1016/j.polymdegradstab.2017.06.026

Google Scholar

[8] S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon N. Y. 49 (2011) 1710–1719.

DOI: 10.1016/j.carbon.2010.12.056

Google Scholar

[9] S. Rafiei, B. Noroozi, S. Arbab, A.K. Haghi, Characteristic assessment of stabilized polyacrylonitrile nanowebs for the production of activated carbon nano-sorbents, Chinese J. Polym. Sci. (English Ed. 32 (2014) 449–457.

DOI: 10.1007/s10118-014-1410-4

Google Scholar

[10] N. Hameed, J. Sharp, S. Nunna, C. Creighton, K. Magniez, P. Jyotishkumar, N. V. Salim, B. Fox, Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization, Polym. Degrad. Stab. 128 (2016) 39–45.

DOI: 10.1016/j.polymdegradstab.2016.02.029

Google Scholar

[11] Q. Duan, B. Wang, H. Wang, Effects of stabilization temperature on structures and properties of polyacrylonitrile (PAN)-based stabilized electrospun nanofiber mats, J. Macromol. Sci. Part B Phys. 51 (2012) 2428–2437.

DOI: 10.1080/00222348.2012.676415

Google Scholar