[1]
M. Zhu, Z. Jian, G. Yang and Y. Zhou, Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys, Mater. Des. 36 (2012) 243-249.
DOI: 10.1016/j.matdes.2011.11.018
Google Scholar
[2]
B. Dang, C.C. Liu, F. Liu, Y.Z. Liu and Y.B. Li, Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy, Trans. Nonferrous Met. Soc. China. 26 (2016) 643-642.
DOI: 10.1016/s1003-6326(16)64152-3
Google Scholar
[3]
A. Srinivasan, U.T.S. Pillai, V. John, and B.C. Pai, Low pressure casting of LM25 (Al-7Si-0.3Mg) aluminum alloy, Adv. Manuf. Processes. 20 (2005) 221-230.
DOI: 10.1081/amp-200041867
Google Scholar
[4]
H. Song, C. Li, H. Chang, W. Wang and S. Zhang, A new cast spinning process for light weight aluminum alloy Wheels, Chin. J. Rare Met. (2012).
Google Scholar
[5]
A.M. Mullis, The effects of fluid flow on secondary arm coarsening during dendritic solidification, J. Mater. Sci. 38 (2003) 2517-2523.
Google Scholar
[6]
Q.W. Zheng, T. Jing, H.B. Dong, Modelling of secondary dendrite arms evolution during solidification by a phase-field method, Mater. Today: Proc. 2 (2015) S466-S473.
DOI: 10.1016/j.matpr.2015.05.063
Google Scholar
[7]
M.I. Houria, Y. Nadot, R. Fathallah, M. Roy and D.M. Maijer, Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356-T6 alloy including mean stress effect, Int. J. Fatigue. 80 (2015) 90-102.
DOI: 10.1016/j.ijfatigue.2015.05.012
Google Scholar
[8]
N.D. Alexopoulos, A. Stylianos, Impact mechanical behaviour of Al–7Si–Mg (A357) cast aluminum alloy. The effect of artificial aging, Mater. Sci. Eng. A. 528 (2011) 6303-6312.
DOI: 10.1016/j.msea.2011.04.086
Google Scholar
[9]
X.J. Yu, Y.L. Lu, F.X. Zhu, and X.C. Li, Effect of heat treatment on microstructures and mechanical properties of A356 alloy by low pressure casting, Adv. Mater. Res. 1096 (2015) 319-324.
DOI: 10.4028/www.scientific.net/amr.1096.319
Google Scholar
[10]
W. Jiang, Z. Fan, D. Liu, D. Liao, X. Dong and X. Zong, Correlation of microstructure with mechanical properties and fracture behavior of A356-T6 aluminum alloy fabricated by expendable pattern shell casting with vacuum and low-pressure, gravity casting and lost foam casting, Mater. Sci. Eng. A. 560 (2013) 396-403.
DOI: 10.1016/j.msea.2012.09.084
Google Scholar
[11]
G. Ran, J.E. Zhou, Y.F. Wang, Study on tensile properties and fractography of cast A356 aluminum alloy, Rare Met. Mater. Eng. 35 (2006) 1620-1624.
Google Scholar
[12]
X. Chen, A.O. Bing, E.M. Branch, Study on heat treatment process, microstructure and properties of casting aluminum alloy wheel, Foundry Technol. 39 (2018) 1115-1117.
Google Scholar
[13]
L. Snugovsky, J.F. Major, D.D. Perovic, Silicon segregation in aluminum casting alloy, Mater. Sci. Technol. 16 (2000) 125-128.
DOI: 10.1179/026708300101507604
Google Scholar
[14]
K. Lee, Y.N. Kwon, S. Lee, Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting process, J. Alloy. Compd. 461 (2008) 532-541.
DOI: 10.1016/j.jallcom.2007.07.038
Google Scholar
[15]
J.H. Peng, X.L. Tang, J.T. He, Effect of heat treatment on microstructure and tensile properties of A356 alloys, Trans. Nonferrous Met. Soc. China. 21 (2011) 1950-1956.
DOI: 10.1016/s1003-6326(11)60955-2
Google Scholar