[1]
H. Kang, S.J. Song, Y.E. Sul, et al, Epitaxial-growth-induced junction welding of silver nanowire network electrodes , ACS Nano. 12 (2018)4894-4902.
DOI: 10.1021/acsnano.8b01900
Google Scholar
[2]
J.H. Park, G.T. Hwang, S. Kim, et al, Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester, Adv. Mater. 29(2017).
DOI: 10.1002/adma.201770029
Google Scholar
[3]
S. Choi, S.I. Han, D. Jung, et al, Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics, Nat. Nanotechnol. 13(2018)1048−1056.
DOI: 10.1038/s41565-018-0226-8
Google Scholar
[4]
Y. Liu, J. Zhang, H. Gao, et al, Capillary-force-induced cold welding in silvernanowire-based flexible transparent electrodes, Nano Lett.17(2017)1090−1096.
DOI: 10.1021/acs.nanolett.6b04613
Google Scholar
[5]
J.H. Seo, I. Hwang, S. Lee, et al, Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via roomtemperature processes, Adv. Mater.29(2017).
DOI: 10.1002/adma.201701479
Google Scholar
[6]
E. Lee, J. Ahn, H.C. Kwon, et al, All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection, Adv. Energy.Mater. 8(2018).
DOI: 10.1002/aenm.201870037
Google Scholar
[7]
Y. Li, G. Xu, C. Cui, et al, Flexible and semitransparent organic solar cells, Adv. Energy.Mater.8(2018).
Google Scholar
[8]
Y. Fang, Z. Wu, J. Li, et al, High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics, Adv. Funct. Mater.28(2018).
DOI: 10.1002/adfm.201705409
Google Scholar
[9]
T. Kim, S. Kang, J. Heo, et al, Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices, Adv. Mater. 30(2018).
DOI: 10.1002/adma.201800659
Google Scholar
[10]
A.G. Ricciardulli, S. Yang, G.J.A.H. Wetzelaer, et al, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics, Adv. Funct. Mater.28(2018).
DOI: 10.1002/adfm.201706010
Google Scholar
[11]
J. Lee, K. An, P. Won, et al, A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes, Nanoscale. 9(2017)1978−(1985).
DOI: 10.1039/c6nr09902e
Google Scholar
[12]
Y. Fang, K. Ding, Z. Wu, et al, Architectural engineering of nanowire network fine pattern for 30um wide flexible quantum dot lightemitting diode application, ACS. Nano.10(2016) 10023−10030.
DOI: 10.1021/acsnano.6b04506
Google Scholar
[13]
H. Lee, D. Lee, Y. Ahn, et al, Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer, Nanoscale. 6(2014)8565−8570.
DOI: 10.1039/c4nr01768d
Google Scholar
[14]
P. Liu, B.Q. Zeng, Y.X. Wang, et al, Transparent conductive nanowires thin films: preparation methods and applications in optoelectronic devices, Materials Review (A).31(2017)6-18.
Google Scholar
[15]
Y.X. Wang, P. Liu, H.H. Wang, et al, Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode, J. Mater. Sci.54(2019)2343-2350.
DOI: 10.1007/s10853-018-2986-9
Google Scholar
[16]
Y.X. Wang, P. Liu, B.Q. Zeng, et al, Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes,Nano.Res. Lett.13(2018).
DOI: 10.1186/s11671-018-2486-5
Google Scholar
[17]
B.R. Yang, W. Cao, G.S. Liu, et al, Microchannel wetting for controllable patterning and alignment of silver nanowire with high resolution, ACS Appl.Mater.Interfaces.7(2015)21433-21441.
DOI: 10.1021/acsami.5b06370
Google Scholar
[18]
Y.Z. Yang, Construction of patterned ZnO nanorod arrays and their transfer on different substrates, Henan University, (2014).
Google Scholar
[19]
D.J. Fine, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks, ACS Appl. Mater. Interfaces. 7(2015)9254-9261.
DOI: 10.1021/acsami.5b01875
Google Scholar
[20]
J. Stegen, Mechanics of carbon nanotube scission under sonication, J. Chem. Phys. 140(2014).
Google Scholar
[21]
Z. Yin, Y. Huang, N. Bu, et al, Inkjet printing for flexible electronics: Materials, processes and equipments, Chinese. Sci. Bull. 55(2010)3383-3407.
DOI: 10.1007/s11434-010-3251-y
Google Scholar
[22]
D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing, J. Electron. Mater. 47(2018)5133-5147.
DOI: 10.1007/s11664-018-6418-z
Google Scholar
[23]
J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors, Adv. Mater. 28(2016)5986−5996.
DOI: 10.1002/adma.201600772
Google Scholar
[24]
J.D. Park, S. Lim, H. Kim, Patterned silver nanowires using the gravure printing process for flexible applications, Thin Solid Films. 586(2015)70−75.
DOI: 10.1016/j.tsf.2015.04.055
Google Scholar
[25]
K. Fukuda, Y. Yoshimura, T. Okamoto, et al, Reverse-offset printing optimized for scalable organic thin-film transistors with submicrometer channel lengths, Adv.Electron.Mater. 1(2015).
DOI: 10.1002/aelm.201500145
Google Scholar
[26]
T.M. Lee, H.S. Han, B. Kim, et al, Roll offset printing process based on interface separation for fine and smooth patterning, Thin Solid Films. 548(2013)566−571.
DOI: 10.1016/j.tsf.2013.09.023
Google Scholar
[27]
W. Li, Y. Yang, B. Zhang, et al, Three-dimensional stretchable and transparent conductors with controllable strain-distribution based on template-assisted transfer printing, ACS Appl. Mater. Interfaces. 11(2019)2140−2148.
DOI: 10.1021/acsami.8b18670
Google Scholar
[28]
G.E. Jabbour, R.Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices, IEEE. J. Sel. Top. Quant. Electron.7(2001 )769-773.
DOI: 10.1109/2944.979337
Google Scholar
[29]
S. Wang, N. Liu, C. Yang, et al, Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors, RSC. Adv. 5(2015)85799-85805.
DOI: 10.1039/c5ra16724h
Google Scholar
[30]
D. Sung, A.F. Vornbrock, V. Subramanian, Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics, IEEE.Trans.Compon.Packag. 33(2010)105-114.
DOI: 10.1109/tcapt.2009.2021464
Google Scholar
[31]
R. Kitsomboonloha, S.J.S. Morris, X. Rong, et al, Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing, Langmuir. 28 (2012) 16711-16723.
DOI: 10.1021/la3037132
Google Scholar
[32]
X. Yin, S. Kumar, Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells, Chem. Eng. Sci. 61(2006)1146-1156.
DOI: 10.1016/j.ces.2005.07.039
Google Scholar
[33]
S. Dodds, M.S. Carvalho, S. Kumar, Stretching and slipping of liquid bridges near plates and cavities, Phys.Fluids. 21(2009).
DOI: 10.1063/1.3212963
Google Scholar
[34]
H. Kim, E. Lee, Y.M, Choi, et al, Development of a precision reverse offset printing system, Rev. Sci. Instrum.87(2016).
Google Scholar
[35]
H. Matsui, Y. Takeda, S. Tokito, Flexible and printed organic transistors: From materials to integrated circuits, Organ. Electron. 75(2019).
DOI: 10.1016/j.orgel.2019.105432
Google Scholar
[36]
K. Park, K. Woo, J. Kim, et al, High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation, ACS. Appl. Mater. Interfaces.11(2019)14882−14891.
DOI: 10.1021/acsami.9b00838
Google Scholar
[37]
B.R. Yang, G.S. Liu, S.J. Han, et al, Coating, patterning, and transferring processes of silver nanowire for flexible display and sensing applications, J. SID. 24(2016)234-240.
DOI: 10.1002/jsid.430
Google Scholar
[38]
S. Liu, S. Ho, F. So, Novel patterning method for silver nanowire electrodes for thermal-evaporated organic light emitting diodes, ACS. Appl.Mater.Interfaces.8(2016) 9268-9274.
DOI: 10.1021/acsami.6b00719
Google Scholar
[39]
Y. Chen, R.S. Carmichael, T.B. Carmichael, Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes, ACS. Appl.Mater.Interfaces. 11(2019).
DOI: 10.1021/acsami.9b11149
Google Scholar
[40]
J.H. Lee, B-C. Huynh-Nguyen, E. Ko, et al, Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide, Sens. Actuators. B. Chem. 224(2016)789-797.
DOI: 10.1016/j.snb.2015.11.006
Google Scholar
[41]
M.D.S.L. Wimalananda, J.K. Kim, J.M. Lee, Patterning of silver nanowire for grid formation by using ultrasonic assisted clean chemical etching for the application of high transparent electrode, Mater. Sci. Eng. B.228(2018)67-73.
DOI: 10.1016/j.mseb.2017.11.014
Google Scholar
[42]
S. Kim, S.Y. Kim, J. Kim, et al, Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness, J. Mater. Chem. C. 2(2014)5636-5643.
DOI: 10.1039/c4tc00686k
Google Scholar