Patterning Method for Nanowire Transparent Conductive Films

Article Preview

Abstract:

With the development of flexible optoelectronic devices, transparent conductive films (TCFs) based on nanowires provide wide concern. The low preparation cost and high-efficiency assembly characteristics make them occupy a very important position in scientific research and industrial application. In practical applications, TCFs in optoelectronic devices often do not need to cover the whole device, but only need to be prepared in part areas. At this time, patterned TCFs need to be prepared. In this paper, four kinds of patterning methods of TCFs are introduced, and the advantages and disadvantages of each method are analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

66-76

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kang, S.J. Song, Y.E. Sul, et al, Epitaxial-growth-induced junction welding of silver nanowire network electrodes , ACS Nano. 12 (2018)4894-4902.

DOI: 10.1021/acsnano.8b01900

Google Scholar

[2] J.H. Park, G.T. Hwang, S. Kim, et al, Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester, Adv. Mater. 29(2017).

DOI: 10.1002/adma.201770029

Google Scholar

[3] S. Choi, S.I. Han, D. Jung, et al, Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics, Nat. Nanotechnol. 13(2018)1048−1056.

DOI: 10.1038/s41565-018-0226-8

Google Scholar

[4] Y. Liu, J. Zhang, H. Gao, et al, Capillary-force-induced cold welding in silvernanowire-based flexible transparent electrodes, Nano Lett.17(2017)1090−1096.

DOI: 10.1021/acs.nanolett.6b04613

Google Scholar

[5] J.H. Seo, I. Hwang, S. Lee, et al, Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via roomtemperature processes, Adv. Mater.29(2017).

DOI: 10.1002/adma.201701479

Google Scholar

[6] E. Lee, J. Ahn, H.C. Kwon, et al, All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection, Adv. Energy.Mater. 8(2018).

DOI: 10.1002/aenm.201870037

Google Scholar

[7] Y. Li, G. Xu, C. Cui, et al, Flexible and semitransparent organic solar cells, Adv. Energy.Mater.8(2018).

Google Scholar

[8] Y. Fang, Z. Wu, J. Li, et al, High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics, Adv. Funct. Mater.28(2018).

DOI: 10.1002/adfm.201705409

Google Scholar

[9] T. Kim, S. Kang, J. Heo, et al, Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices, Adv. Mater. 30(2018).

DOI: 10.1002/adma.201800659

Google Scholar

[10] A.G. Ricciardulli, S. Yang, G.J.A.H. Wetzelaer, et al, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics, Adv. Funct. Mater.28(2018).

DOI: 10.1002/adfm.201706010

Google Scholar

[11] J. Lee, K. An, P. Won, et al, A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes, Nanoscale. 9(2017)1978−(1985).

DOI: 10.1039/c6nr09902e

Google Scholar

[12] Y. Fang, K. Ding, Z. Wu, et al, Architectural engineering of nanowire network fine pattern for 30um wide flexible quantum dot lightemitting diode application, ACS. Nano.10(2016) 10023−10030.

DOI: 10.1021/acsnano.6b04506

Google Scholar

[13] H. Lee, D. Lee, Y. Ahn, et al, Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer, Nanoscale. 6(2014)8565−8570.

DOI: 10.1039/c4nr01768d

Google Scholar

[14] P. Liu, B.Q. Zeng, Y.X. Wang, et al, Transparent conductive nanowires thin films: preparation methods and applications in optoelectronic devices, Materials Review (A).31(2017)6-18.

Google Scholar

[15] Y.X. Wang, P. Liu, H.H. Wang, et al, Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode, J. Mater. Sci.54(2019)2343-2350.

DOI: 10.1007/s10853-018-2986-9

Google Scholar

[16] Y.X. Wang, P. Liu, B.Q. Zeng, et al, Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes,Nano.Res. Lett.13(2018).

DOI: 10.1186/s11671-018-2486-5

Google Scholar

[17] B.R. Yang, W. Cao, G.S. Liu, et al, Microchannel wetting for controllable patterning and alignment of silver nanowire with high resolution, ACS Appl.Mater.Interfaces.7(2015)21433-21441.

DOI: 10.1021/acsami.5b06370

Google Scholar

[18] Y.Z. Yang, Construction of patterned ZnO nanorod arrays and their transfer on different substrates, Henan University, (2014).

Google Scholar

[19] D.J. Fine, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks, ACS Appl. Mater. Interfaces. 7(2015)9254-9261.

DOI: 10.1021/acsami.5b01875

Google Scholar

[20] J. Stegen, Mechanics of carbon nanotube scission under sonication, J. Chem. Phys. 140(2014).

Google Scholar

[21] Z. Yin, Y. Huang, N. Bu, et al, Inkjet printing for flexible electronics: Materials, processes and equipments, Chinese. Sci. Bull. 55(2010)3383-3407.

DOI: 10.1007/s11434-010-3251-y

Google Scholar

[22] D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing, J. Electron. Mater. 47(2018)5133-5147.

DOI: 10.1007/s11664-018-6418-z

Google Scholar

[23] J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors, Adv. Mater. 28(2016)5986−5996.

DOI: 10.1002/adma.201600772

Google Scholar

[24] J.D. Park, S. Lim, H. Kim, Patterned silver nanowires using the gravure printing process for flexible applications, Thin Solid Films. 586(2015)70−75.

DOI: 10.1016/j.tsf.2015.04.055

Google Scholar

[25] K. Fukuda, Y. Yoshimura, T. Okamoto, et al, Reverse-offset printing optimized for scalable organic thin-film transistors with submicrometer channel lengths, Adv.Electron.Mater. 1(2015).

DOI: 10.1002/aelm.201500145

Google Scholar

[26] T.M. Lee, H.S. Han, B. Kim, et al, Roll offset printing process based on interface separation for fine and smooth patterning, Thin Solid Films. 548(2013)566−571.

DOI: 10.1016/j.tsf.2013.09.023

Google Scholar

[27] W. Li, Y. Yang, B. Zhang, et al, Three-dimensional stretchable and transparent conductors with controllable strain-distribution based on template-assisted transfer printing, ACS Appl. Mater. Interfaces. 11(2019)2140−2148.

DOI: 10.1021/acsami.8b18670

Google Scholar

[28] G.E. Jabbour, R.Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices, IEEE. J. Sel. Top. Quant. Electron.7(2001 )769-773.

DOI: 10.1109/2944.979337

Google Scholar

[29] S. Wang, N. Liu, C. Yang, et al, Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors, RSC. Adv. 5(2015)85799-85805.

DOI: 10.1039/c5ra16724h

Google Scholar

[30] D. Sung, A.F. Vornbrock, V. Subramanian, Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics, IEEE.Trans.Compon.Packag. 33(2010)105-114.

DOI: 10.1109/tcapt.2009.2021464

Google Scholar

[31] R. Kitsomboonloha, S.J.S. Morris, X. Rong, et al, Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing, Langmuir. 28 (2012) 16711-16723.

DOI: 10.1021/la3037132

Google Scholar

[32] X. Yin, S. Kumar, Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells, Chem. Eng. Sci. 61(2006)1146-1156.

DOI: 10.1016/j.ces.2005.07.039

Google Scholar

[33] S. Dodds, M.S. Carvalho, S. Kumar, Stretching and slipping of liquid bridges near plates and cavities, Phys.Fluids. 21(2009).

DOI: 10.1063/1.3212963

Google Scholar

[34] H. Kim, E. Lee, Y.M, Choi, et al, Development of a precision reverse offset printing system, Rev. Sci. Instrum.87(2016).

Google Scholar

[35] H. Matsui, Y. Takeda, S. Tokito, Flexible and printed organic transistors: From materials to integrated circuits, Organ. Electron. 75(2019).

DOI: 10.1016/j.orgel.2019.105432

Google Scholar

[36] K. Park, K. Woo, J. Kim, et al, High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation, ACS. Appl. Mater. Interfaces.11(2019)14882−14891.

DOI: 10.1021/acsami.9b00838

Google Scholar

[37] B.R. Yang, G.S. Liu, S.J. Han, et al, Coating, patterning, and transferring processes of silver nanowire for flexible display and sensing applications, J. SID. 24(2016)234-240.

DOI: 10.1002/jsid.430

Google Scholar

[38] S. Liu, S. Ho, F. So, Novel patterning method for silver nanowire electrodes for thermal-evaporated organic light emitting diodes, ACS. Appl.Mater.Interfaces.8(2016) 9268-9274.

DOI: 10.1021/acsami.6b00719

Google Scholar

[39] Y. Chen, R.S. Carmichael, T.B. Carmichael, Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes, ACS. Appl.Mater.Interfaces. 11(2019).

DOI: 10.1021/acsami.9b11149

Google Scholar

[40] J.H. Lee, B-C. Huynh-Nguyen, E. Ko, et al, Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide, Sens. Actuators. B. Chem. 224(2016)789-797.

DOI: 10.1016/j.snb.2015.11.006

Google Scholar

[41] M.D.S.L. Wimalananda, J.K. Kim, J.M. Lee, Patterning of silver nanowire for grid formation by using ultrasonic assisted clean chemical etching for the application of high transparent electrode, Mater. Sci. Eng. B.228(2018)67-73.

DOI: 10.1016/j.mseb.2017.11.014

Google Scholar

[42] S. Kim, S.Y. Kim, J. Kim, et al, Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness, J. Mater. Chem. C. 2(2014)5636-5643.

DOI: 10.1039/c4tc00686k

Google Scholar