[1]
K.S. Novoselov, Science, Electric field effect in atomically thin carbon films, J. Science. 306 (2004) 666-669.
Google Scholar
[2]
B. He, Y.F. Pan, M. Lu, Research progress of additive manufacturing of graphene-based energy storage materials, J. Materials Reports. 31 (2017) 126-130.
Google Scholar
[3]
C. Zheng, X. Zhou, H. Cao, et al, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. J Power Sources. 258 (2014) 290-296.
DOI: 10.1016/j.jpowsour.2014.01.056
Google Scholar
[4]
K.H. Thebo, X. Qian, Q. Zhang, et al, Highly stable graphene-oxide-based membranes with superior permeability, J. Nat Commun. 9 (2018) 1486.
DOI: 10.1038/s41467-018-03919-0
Google Scholar
[5]
Y. Kiani, M. Mirzaei, Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements, J. Compos Struct. 186 (2018) 114-122.
DOI: 10.1016/j.compstruct.2017.11.086
Google Scholar
[6]
H. Tang, F.H. Sun, J.F. Dong, et al, Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability, J. Nano energy. 49 (2018) 267-273.
DOI: 10.1016/j.nanoen.2018.04.058
Google Scholar
[7]
S.Y. Cho, Y. Lee, H.J. Koh, et al, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene, J. Adv Mater. 28 (2016) 7020-7028.
DOI: 10.1002/adma.201601167
Google Scholar
[8]
V.I. Sysoev, A.V. Okotrub, I.P. Asanov, et al, Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide, J. Carbon. 118 (2017) 225-232.
DOI: 10.1016/j.carbon.2017.03.026
Google Scholar
[9]
W. Zhao, J. Kong, H. Liu, et al, Ultra-high thermally conductive and rapid heat responsive poly (benzobisoxazole) nanocomposites with self-aligned graphene, J. Nanoscale. 8 (2016) 19984-19993.
DOI: 10.1039/c6nr06622d
Google Scholar
[10]
S.B. Yang, H.J. Yu, D. Shen, Effect of thermal peeling temperature on the structure and electrical properties of grapheme, J. Materials Reports. 29 (2015) 22-25.
Google Scholar
[11]
D. Bilgili , L. Kirkayak, M. Kirca, The effects of intertube bridging through graphene nanoribbons on the mechanical properties of pillared graphene, J. Compos Part B-Eng.120 (2017) 1-9.
DOI: 10.1016/j.compositesb.2017.03.064
Google Scholar
[12]
Y.H. Wu, Y. Lei, H.X. Wu, et al, Review on the mechanical and tribological properties of graphene in the application of micro-electromechanical systems, J. Materials Reports. 29 (2015) 65-69.
Google Scholar
[13]
Z.L. Liu, J.W. Lin, Y. Luo, et al, Preparation and characterization of reduced graphene oxide @ lauric acid-palmitic acid composite phase change materials by surfactant synergistic ultrasonic dispersion, J. Materials Reports. 32 (2018) 4381-4385.
Google Scholar
[14]
K. Chu, X.H. Wang, F. Wang, et al, Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network, J. Carbon. 127 (2018) 102-112.
DOI: 10.1016/j.carbon.2017.10.099
Google Scholar
[15]
X. Liu, X. Liu, B. Sun, et al, Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties, J. Carbon. 130 (2018) 680-691.
DOI: 10.1016/j.carbon.2018.01.046
Google Scholar
[16]
Y.H. Yu, Y.Y. Lin, C.H. Lin, et al, High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties, Polym Chem-UK. 5 (2014) 535-550.
DOI: 10.1039/c3py00825h
Google Scholar
[17]
C.H. Chang, T.C. Huang, C.W. Peng, et al, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon. 50 (2012) 5044-5051.
DOI: 10.1016/j.carbon.2012.06.043
Google Scholar
[18]
M.J. Cui, S.M. Ren, H.C. Zhao, et al, Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating, J. Chem Eng J. 335 (2018) 255-266.
DOI: 10.1016/j.cej.2017.10.172
Google Scholar
[19]
G. Zhu, X. Cui, Y. Zhang, et al, Poly (vinyl butyral)/graphene oxide/poly nanocomposite coating for improved aluminum alloy anticorrosion, J. Polymer. 172 (2019) 415-422.
DOI: 10.1016/j.polymer.2019.03.056
Google Scholar
[20]
K.C. Chang, M.H. Hsu, H. Lu, et al, Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel, J. Carbon. 66 (2014) 144-153.
DOI: 10.1016/j.carbon.2013.08.052
Google Scholar
[21]
S. Pourhashem, A. Rashidi, M.R. Vaezi, et al, Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide, J. Surf Coat Tech. 317 (2017) 1-9.
DOI: 10.1016/j.surfcoat.2017.03.050
Google Scholar
[22]
K. Qi, Y. Sun, H. Duan, et al, A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite, J. Corros Sci. 98 (2015) 500-506.
DOI: 10.1016/j.corsci.2015.05.056
Google Scholar
[23]
X. Li, J. Feng, J. Mao, Study on anticorrosive properties of sbr / graphene composite coating, J. Guangzhou Chemical Industry. 46 (2018) 83-86.
Google Scholar
[24]
J. Zou, Study on preparation and properties of graphene oxide modified waterborne epoxy anticorrosive coatings, J. Chemical Engineer. 33 (2019) 1-4.
Google Scholar
[25]
Z.W. Liu, Y.L. Qiao, S.J. Wang, et al, Effects of graphene and dimethicone on the performance of Ti-Si organic film, J. Materials Protection. 52 (2019) 112 -115.
Google Scholar
[26]
L.P. Chen, L. Cai, G.H. Li, et al, Research progress and trend of heat storage technology based on CiteSpace, J. Materials Reports. 33 (2019) 1505-1511.
Google Scholar
[27]
W. Sun, L. Wang, T. Wu, et al, Inhibited corrosion-promotion activity of graphene encapsulated in nanosized silicon oxide, J. J Mater Chem A. 03 (2015) 16843-16848.
DOI: 10.1039/c5ta04236d
Google Scholar
[28]
F. Zhou, Z. Li, G.J. Shenoy, et al, Enhanced room-temperature corrosion of copper in the presence of graphene, J. ACS Nano. 7 (2013) 6939-6947.
DOI: 10.1021/nn402150t
Google Scholar
[29]
Y.N. Zheng, X.Y. Xu, Z.H. Liu, Research on research frontier recognition method based on keyword co-occurrence, J. Library and Information Service. 60 (2016) 85-92.
Google Scholar
[30]
C. Chen, S. Qiu, M. Cui, et al, Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene, J. Carbon. 114 (2017) 356-366.
DOI: 10.1016/j.carbon.2016.12.044
Google Scholar
[31]
F. Wu , W. Zhao, H. Chen, et al, Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide, J. Surf Interface Anal. 49 (2017) 85-92.
DOI: 10.1002/sia.6062
Google Scholar
[32]
B. Pan, G. Xu, B. Zhang, et al, Preparation and tribological properties of polyamide 11/graphene coatings, J. Polym-Plast Technol. 51 (2012) 1163-1166.
Google Scholar
[33]
N. Nemati, M. Emamy, S. Yau, et al, High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel, J. RSC Adv. 6 (2016) 5977-5987.
DOI: 10.1039/c5ra23509j
Google Scholar
[34]
H.F. Guo, J.W. Yan, Z.H. He, et al, Failure analysis on 42CrMo steel bolt fracture, J. Adv Mater Sci. Eng. 2019 (2019) 1–8.
Google Scholar
[35]
X. Wang, F. Tang, X. Qi, et al, Mechanical, electrochemical, and durability behavior of graphene nano-platelet loaded epoxy-resin composite coatings, J. Compos Part B-Eng. 176 (2019) 107103.
DOI: 10.1016/j.compositesb.2019.107103
Google Scholar