Preparation and Properties of Straw Fiber/Polylactic Acid Composites

Article Preview

Abstract:

Straw fiber (SF)/polylactic acid (PLA) composites were prepared from SF and PLA. The effects of the composite SF/PLA mass ratio investigated in terms of mechanical properties, water resistance, crystal structure, and thermal properties were investigated. These composites were characterized by scanning electron microscopic (SEM), X-ray diffractometric (XRD), differential scanning calorimetric (DSC), and thermogravimetric analyses (TGA). The results showed that, when the SF/PLA mass ratio was 3/7, the mechanical properties and water resistance of these composites were the best. When the mass ratio exceeded 3/7, the interface compatibility in the composites decreased. As the SF/PLA mass ratio increased, the crystallinity and the heat resistance of the composites were decreased.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

122-129

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Chattopadhyay, R.K. Khandal, R. Uppaluri, et al, Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties, J. Appl. Polym. Sci. 119 (2011) 1619-1626.

DOI: 10.1002/app.32826

Google Scholar

[2] A. Elkhaoulani, F.Z. Arrakhiz, K. Benmoussa, et al, Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene, Mater. Des. 49 (2013) 203-208.

DOI: 10.1016/j.matdes.2013.01.063

Google Scholar

[3] M.R. Ismail, A.A.M. Yassen, M.S. Afify, Mechanical properties of rice straw fiber-reinforced polymer composites, Fibers. Polym. 12 (2011) 648-656.

DOI: 10.1007/s12221-011-0648-5

Google Scholar

[4] F. Vilaseca, R. Del Rey, R. Serrat, et al, Macro and micro-mechanics behavior of stifness in alkaline treated hemp core fibres polypropylene-based composites, Compos. B. Eng. 144 (2018) 118-125.

DOI: 10.1016/j.compositesb.2018.02.029

Google Scholar

[5] F. Yao, Q. Wu, Y. Lei, et al, Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading, Ind. Crops. Prod. 28 (2008) 63-72.

DOI: 10.1016/j.indcrop.2008.01.007

Google Scholar

[6] H.S. Yang, D.J. Kim, H.J. Kim, Rice straw-wood particle composite for sound absorbing wooden construction materials, Bioresour. Technol. 86 (2003) 117-121.

DOI: 10.1016/s0960-8524(02)00163-3

Google Scholar

[7] X.D. Zhu, F.H. Wang, Y. Liu, Properties of wheat-straw boards with FRW based on interface treatment, Phys. Procedia. 32 (2012) 430-443.

DOI: 10.1016/j.phpro.2012.03.582

Google Scholar

[8] A. Satlewal, R. Agrawal, S. Bhagia, et al, Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties, Biofuel. Bioprod. Biorefin. 12 (2017) 83-107.

DOI: 10.1002/bbb.1818

Google Scholar

[9] B. Tsegaye, C. Balomajumder, P. Roy, Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production, Renew. Energ. 148 (2020) 923-934.

DOI: 10.1016/j.renene.2019.10.176

Google Scholar

[10] M. Tejada, C. Benitez, Effects of crushed maize straw residues on soil biological properties and soil restoration, Land. Degrad. Dev. 25 (2014) 501-509.

DOI: 10.1002/ldr.2316

Google Scholar

[11] X. Zeng, Y. Ma, L. Ma, Utilization of straw in biomass energy in China, Renew. Sust. Energ. Rev. 11 (2007) 976-987.

DOI: 10.1016/j.rser.2005.10.003

Google Scholar

[12] J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polym. Eng. Sci. 41 (2001) 1471-1485.

DOI: 10.1002/pen.10846

Google Scholar

[13] L.J. Qin, J.H. Qiu, M.Z. Liu, et al, Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate), Chem. Eng. J. 166 (2011) 772-778.

DOI: 10.1016/j.cej.2010.11.039

Google Scholar

[14] N.D. Yaacab, H. Ismail, S.S. Ting, Potential use of paddy straw as filler in poly lactic acid/paddy straw powder biocomposite: thermal and thermal properties, Procedia. Chem. 19 (2016) 757-762.

DOI: 10.1016/j.proche.2016.03.081

Google Scholar

[15] Y. Zhao, J.H. Qiu, H.X. Feng, et al , Improvement of tensile and thermal properties of poly(lactic acid) composites with admicellar-treated rice straw fiber, Chem. Eng. J. 173 (2011) 659-666.

DOI: 10.1016/j.cej.2011.07.076

Google Scholar

[16] K. Oksman, M. Skrifvars, J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol. 63 (2003) 1317-1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[17] K.F. Kelton, A.L. Greer, Nucleation in condensed matter: applications in materials and biology, Pergamon, London, (2010).

DOI: 10.1016/s1470-1804(09)01506-5

Google Scholar

[18] Y.H. Zhang, L. Yang, Y.F. Zuo, et al, Effect of glycerol addition on the properties of wood flour/polylactic acid composite, J. Build. Mater. 18 (2015) 1111-1116.

Google Scholar