[1]
E. Navara, K.E. Easterling, Observations on the decohesion of oxide particles in a deformed iron-base matrix, Jernkont Ann. 155(1971)438-441.
Google Scholar
[2]
B.S. Terry, O.S. Chinyamakobvu, Effects of cooling rate and heat treatment on the microstructure of iron-based titanium carbide composites, Mater. Sci. Eng. 27(1992)5666-5670.
DOI: 10.1007/bf00541640
Google Scholar
[3]
Y.C. Ding, Y.S. Wang, J. Wang, et al, Study on wear-resistance of VC-Fe composite fabricated by powder metallurgy technique, Hot. Work. Technol. 36(2007)15-17. (In Chinese).
Google Scholar
[4]
A. Gatti, Iron alumina materials, Trans. AIME. 215(1959)735-755.
Google Scholar
[5]
Z. Wang, Y. Liu, B. Zou, et al,Mechanical properties and microstructure of Al2O3-SiCw ceramic tool material toughened by Si3N4 particles, Ceram. Int. 46(2020)8845-8852.
DOI: 10.1016/j.ceramint.2019.12.129
Google Scholar
[6]
M.J. Lai, Y.J. Li, L. Lillpopp, et al, On the origin of the improvement of shape memory effect by precipitating VC in Fe-Mn-Si-based shape memory alloys, Acta Mater. 155(2018)222–235.
DOI: 10.1016/j.actamat.2018.06.008
Google Scholar
[7]
X.H. Zhang, Y.H. Sun, M.Y. Niu, Microstructure and mechanical behavior of in situ TiC reinforced Fe3Al(Fe-23Al-3Cr) matrix composites by mechanical alloying and vacuum hot-pressing sintering technology, Vacuum. 18(2020)109544.
DOI: 10.1016/j.vacuum.2020.109544
Google Scholar
[8]
C.L. Cramer, A.D. Preston, K. Ma, et al, In-situ metal binder-phase formation to make WC-FeNi cermets with spark plasma sintering from WC, Fe, Ni, and carbon powders, Int. J. Refract. Met. Hard Mater. 88(2020)105204.
DOI: 10.1016/j.ijrmhm.2020.105204
Google Scholar
[9]
J. Pulsford, F. Venturi, S. Kamnis, et al, Sliding wear behaviour of WC-Co reinforced NiCrFeSiB HVOAF thermal spray coatings against WC-Co and Al2O3 counter bodies, Surf. Coat. Technol. 386(2020)125468.
DOI: 10.1016/j.surfcoat.2020.125468
Google Scholar
[10]
Z.H. Chu, F.H. Wei, W.X. Zheng, et al, Micro-structure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying, J. Alloys Compd. 785(2019)206-213.
DOI: 10.1016/j.jallcom.2019.01.171
Google Scholar
[11]
J.K. Xu, J.F. Lang, D. An, et al, A novel alternating current-assisted sintering method for rapid densification of Al2O3 ceramics with ultrahigh flexural strength, Ceram. Int. 46(2020)5484-5488.
DOI: 10.1016/j.ceramint.2019.10.287
Google Scholar
[12]
Y.P. Bai, J.D. Xing, Y.Y. He, et al, Tribological behavior of in situ (Cr, Mo)/Fe3Al-20wt%Al2O3 composites at elevated temperatures, Proc. Inst. Mech. Eng., Part J. 228(2014)904-912.
Google Scholar
[13]
S.S. Wu, X.X. Zhongjiang, Interaction between ceramic particles and metal solidification interface, Spec. Cast. Nonferrous Alloys. 000(1998)34-56. (In Chinese).
Google Scholar
[14]
S.Z. Li, Z. Deng, X. Zhang, et al, WC-Fe layer with high volume fraction and fracture toughness on cast iron fabricated by in situ solid-phase diffusion, Vacuum. 168(2019)108801.
DOI: 10.1016/j.vacuum.2019.108801
Google Scholar
[15]
E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng. 246(1998)221-234.
DOI: 10.1016/s0921-5093(97)00710-7
Google Scholar
[16]
J.G. Fu, J. Liu, X.H. Zhu, et al, Research status of influence of micro and nano particles on micro arc oxidation composite coatings, Hot. Work. Technol, 49(2020)19-26. (In Chinese).
Google Scholar
[17]
Y.D. Pang, W.P. Chen, J.F. Yang, et al, Effect of TiC/NbC addition on microstructure and mechanical properties of iron matrix composites, Rare Met. Cem. Carbides. 48(2020)45-49. (In Chinese).
Google Scholar
[18]
X.Q. Huang, A.W. Zuo, Z. Wang, et al, Performance of iron-based composites reinforced by different SiC contents, Powder Metall. Mater. Sci. Eng. 19(2014)271-277. (In Chinese).
Google Scholar
[19]
J. Zhang, N.G. Zhang, Mechanical properties and applications of new composite materials, Beijing University of aeronautics and astronautics press, Chinese, (1993).
Google Scholar
[20]
X.J. Cao, J.F. Jin, J.Q. Cao, et al, Wear properties of iron matrix composites reinforced by different types of particles, Mater. Eng. 45(2017)62-67. (In Chinese).
Google Scholar
[21]
Z. Wang, J. Tan, B.A. Sun, et al, Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles, Mater. Sci. Eng., A. 600(2014)53-58.
DOI: 10.1016/j.msea.2014.02.003
Google Scholar
[22]
C. Kuforiji, M. Nganbe, Powder metallurgy fabrication, characterisation and wear assessment of SS316L-Al2O3 composites, Tribol. Int. 130(2018)339-351.
DOI: 10.1016/j.triboint.2018.10.002
Google Scholar
[23]
T. Jiang, J.J. Sun, Y.J. Wang, et al, Strong grain-size effect on martensitic transformation in high-carbon steels made by powder metallurgy, Powder Technol. 363(2020)652-656.
DOI: 10.1016/j.powtec.2020.01.002
Google Scholar
[24]
J.W. Zhou, W.Y. He, J.L. Xu, et al, Strengthening mechanism and wear resistance of laser cladding Al2O3/Fe901 composite coating, Acta Optic. Sin. 39(2019)211-219. (In Chinese).
Google Scholar
[25]
P. Grant, I Palmer, I. Stone. Spray formed aerospace alloys are high flyers, Mater. World. 7(1999)331-333.
Google Scholar
[26]
S.H. Hussain, C.S. Cui, N. Temple, et al, Porosity and microstructure of steel tubes spray-formed by close-coupled atomizer, J. Mater. Process. Technol. 276(2020)116407.
DOI: 10.1016/j.jmatprotec.2019.116407
Google Scholar
[27]
H. Rosskamp, M. Ostqathe, F. Thuemmler, et al, Sintered steels with inert hard phase produced by mechanical alloying ball mill, Powder Metall. 39(1996)37-43.
DOI: 10.1179/pom.1996.39.1.37
Google Scholar
[28]
Y.P. Bai, J.J. Luo, J.P. Li, et al, Effect of nano-NiAl phase on microstructure and mechanical and oxidation properties of Fe-based alloys, Surf. Technol. 48(2019)144-150. (In Chinese).
Google Scholar
[29]
Z.A. Munir, J.B. Holt, Combustion and plasma synthesis of high-temperature materials, VCH, USA, (1990).
Google Scholar
[30]
E.V.Z Karimi, A. Moloodi, J.V. Khaki, et al, A study on carbon nanotubes/nanofibers production via SHS method in C-Al-Fe2O3 system, J. Mater. Res. Technol. 7(2018)212-217.
DOI: 10.1016/j.jmrt.2017.06.005
Google Scholar
[31]
P. Sahoo, K.J. Koczak, Elevated temperature response of in situ TiC reinforced aluminum copper alloys, Mater. Sci. Eng., 144(1990)25-30.
Google Scholar
[32]
D.L. Ye, J.H. Hu, Practical inorganic thermodynamics data Book, Metallurgical industry press, China, 2002. (In Chinese).
Google Scholar
[33]
Z.L. Cao, Z.Y. Wang, Handbook of inorganic chemical reaction equations, Hunan science and technology Press, China, 1985. (In Chinese).
Google Scholar
[34]
H.Q. Bai, L.S. Zhong, P. Cui, et al, Microstructure and compressive properties of V–V8C7/Fe core-shell rod-reinforced iron-based composite fabricated via two-step in-situ reaction, Vacuum. 176(2020)190302.
DOI: 10.1016/j.vacuum.2020.109302
Google Scholar
[35]
Q.Q. He, P.M. Li, Y. Yuan, et al, Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites, Powder Metall. Technol.37(2019)11-17.
Google Scholar
[36]
B. Yu, L.Y. He, Z.F. Guan, et al, Preparation and wear-resistant of iron-base surface composites, Spec. Cast. Nonferrous Alloys. 35(2015)1298-1330.
Google Scholar
[37]
L.B. Chen, T.H. Cao, R. Wei, et al, Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys, Mater. Sci. Eng., A. 772(2020)138661.
DOI: 10.1016/j.msea.2019.138661
Google Scholar
[38]
R.L. Wang, Study on abrasive wear Properties of Al2O3 multiphase Ceramic/high chromium cast iron composites, Hot. Work. Technol. 47(2018)103-106.
Google Scholar
[39]
J. Huang, H. Xie, X. Zan, et al, Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel, Surf. Coat. Technol. 383(2020)125282.
DOI: 10.1016/j.surfcoat.2019.125282
Google Scholar
[40]
F. Xu, J.G. Li, X.M. Feng, et al, Research on frictional material prepared by Copper-coating Al particles on Iron-based, Hot. Work. Technol. 38(2009)61-63.
Google Scholar
[41]
J.J. Ru, H. He, Y.H. Jiang, et al, Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites, J. Alloys Compd. 786(2019)321-329.
DOI: 10.1016/j.jallcom.2019.01.342
Google Scholar
[42]
D. Feng, Q.X. Ren, H.Q. Ru, et al, Pressure-less sintering behaviour and mechanical properties of Fe2O3-containing SiC ceramics, J. Alloys Compd. 790(2019)134-140.
DOI: 10.1016/j.jallcom.2019.03.166
Google Scholar
[43]
X. Wang, H.F. Ding, Microstructure and performance of iron based composites reinforced by SiC particles with deposition, Aerosp. Mater. Technol. 31(2001)49-53.
Google Scholar
[44]
S.Y. Zhang, Z.Y. Xiao, Z.Y. Xi, et al, Study on SiC particle reinforced iron-basedpowder metallurgy composite, J. South China Univ. Technol. 27(1999)106-109. (In Chinese).
Google Scholar
[45]
S.S. Wang, B.B. Fan, Y.Q. Chen, et al, Preparation of nickel-coated silicon carbide particle composite powder by in-situ chemical deposition method, Bull. Chin. Ceram. Soc, 33(2014)629-634.
Google Scholar
[46]
R. Chang, J.B. Zang, Y.H. Wang, et al, Comparison study of Fe-based matrix composites reinforced with Ti-coated and Mo-coated SiC particles, Mater. Chem. Phys. 204(2018)154-161.
DOI: 10.1016/j.matchemphys.2017.10.007
Google Scholar
[47]
X.Y. Chong, M.H. Zhen, Y. Qiu, et al, Electroless copper plating on α-SiC powder and its effect on properties of α-SiC/Fe composites, Surf. Technol. 47(2018)244-249.
Google Scholar
[48]
J.F. Liu, Study on the structure and properties of Fe/Al2O3 gradient coatings composite, Univ of Jinan. 2011. (In Chinese).
Google Scholar
[49]
X.Q. Huang, The effect of SiC content and particle size on microstructures and wear properties of SiC/Fe-3Cu-C material, Central South Univ. 2014. (In Chinese).
Google Scholar
[50]
V.C. Nardone, K.M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scr. Metall. 20(1986)43-48.
DOI: 10.1016/0036-9748(86)90210-3
Google Scholar
[51]
R.J. Arsenault, L. Wang, C.R. Feng,et al, Strengthening of composites due to microstructural changes in the matrix, Acta Metall. Mater. 39(1991)47-57.
DOI: 10.1016/0956-7151(91)90327-w
Google Scholar
[52]
N. Ramakrishnan, An analytical study on strengthening of particulate reinforced metal matrix composites, Acta Mater. 44(1996)69-77.
DOI: 10.1016/1359-6454(95)00150-9
Google Scholar
[53]
F. Maresca, W.A. Curtin, Theory of screw dislocation strengthening in random bcc alloys from dilute to high-entropy, alloys, Acta Mater. 182(2020)144-162.
DOI: 10.1016/j.actamat.2019.10.007
Google Scholar
[54]
M.R. Barnett, H. Wang, T. Guo, et al, An orowan precipitate strengthening equation for mechanical twinning in Mg, Int. J. Plast. 112(2019)108-122.
DOI: 10.1016/j.ijplas.2018.08.010
Google Scholar
[55]
X.Y. Hou, Y.J. Bi, L. Hao, et al, Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel, Iron Steel. 54(2019)63-67. (In Chinese).
Google Scholar
[56]
G.H. Wu, P. Hou, K.M. Wu, et al, Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel, J. Magn. Magn. Mater. 479(2019)43-49.
DOI: 10.1016/j.jmmm.2019.01.109
Google Scholar
[57]
J. Ru, Y. Jiang, R. Zhou, et al, Preparation of Ni-encapsulated ZTA particles as precursors to reinforce iron-based composites, Adv. Eng. Mater. 19(2017)170268.
DOI: 10.1002/adem.201700268
Google Scholar
[58]
L. Gao, S.M. Liang, R.S. Chen, et al, Correlation of recalescence with grain refinement of magnesium alloys, Trans. Nonferrous Met. Soc. China. 18(2008)s288-s291.
DOI: 10.1016/s1003-6326(10)60219-1
Google Scholar
[59]
D. Yang, Y. Liu, H.P. Jiang, et al, A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains, J. Alloys Compd. 823(2020)153729.
DOI: 10.1016/j.jallcom.2020.153729
Google Scholar