Research Progress of Preparation and Interfacial Reaction of Ceramic Particles Reinforced Iron-Based Alloy

Article Preview

Abstract:

Ceramic particle reinforced iron-based alloys have been widely used in aerospace, land transportation and other aspects, so it has attracted tremendous attention. Aiming at the preparation and interfacial reaction of ceramic particle reinforced iron-based alloys, the preparation methods for interfacial reactions, reinforcement selection and design of ceramic particle reinforced iron-based alloys are introduced in this paper. Combined with the recent studies on ceramic particle reinforced iron-based alloys, this paper focuses on the ceramic particle reinforced iron-based interface and strengthening models/mechanisms, based on existing research, prospects for further ceramic particle reinforced iron-based alloys were studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

153-167

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Navara, K.E. Easterling, Observations on the decohesion of oxide particles in a deformed iron-base matrix, Jernkont Ann. 155(1971)438-441.

Google Scholar

[2] B.S. Terry, O.S. Chinyamakobvu, Effects of cooling rate and heat treatment on the microstructure of iron-based titanium carbide composites, Mater. Sci. Eng. 27(1992)5666-5670.

DOI: 10.1007/bf00541640

Google Scholar

[3] Y.C. Ding, Y.S. Wang, J. Wang, et al, Study on wear-resistance of VC-Fe composite fabricated by powder metallurgy technique, Hot. Work. Technol. 36(2007)15-17. (In Chinese).

Google Scholar

[4] A. Gatti, Iron alumina materials, Trans. AIME. 215(1959)735-755.

Google Scholar

[5] Z. Wang, Y. Liu, B. Zou, et al,Mechanical properties and microstructure of Al2O3-SiCw ceramic tool material toughened by Si3N4 particles, Ceram. Int. 46(2020)8845-8852.

DOI: 10.1016/j.ceramint.2019.12.129

Google Scholar

[6] M.J. Lai, Y.J. Li, L. Lillpopp, et al, On the origin of the improvement of shape memory effect by precipitating VC in Fe-Mn-Si-based shape memory alloys, Acta Mater. 155(2018)222–235.

DOI: 10.1016/j.actamat.2018.06.008

Google Scholar

[7] X.H. Zhang, Y.H. Sun, M.Y. Niu, Microstructure and mechanical behavior of in situ TiC reinforced Fe3Al(Fe-23Al-3Cr) matrix composites by mechanical alloying and vacuum hot-pressing sintering technology, Vacuum. 18(2020)109544.

DOI: 10.1016/j.vacuum.2020.109544

Google Scholar

[8] C.L. Cramer, A.D. Preston, K. Ma, et al, In-situ metal binder-phase formation to make WC-FeNi cermets with spark plasma sintering from WC, Fe, Ni, and carbon powders, Int. J. Refract. Met. Hard Mater. 88(2020)105204.

DOI: 10.1016/j.ijrmhm.2020.105204

Google Scholar

[9] J. Pulsford, F. Venturi, S. Kamnis, et al, Sliding wear behaviour of WC-Co reinforced NiCrFeSiB HVOAF thermal spray coatings against WC-Co and Al2O3 counter bodies, Surf. Coat. Technol. 386(2020)125468.

DOI: 10.1016/j.surfcoat.2020.125468

Google Scholar

[10] Z.H. Chu, F.H. Wei, W.X. Zheng, et al, Micro-structure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying, J. Alloys Compd. 785(2019)206-213.

DOI: 10.1016/j.jallcom.2019.01.171

Google Scholar

[11] J.K. Xu, J.F. Lang, D. An, et al, A novel alternating current-assisted sintering method for rapid densification of Al2O3 ceramics with ultrahigh flexural strength, Ceram. Int. 46(2020)5484-5488.

DOI: 10.1016/j.ceramint.2019.10.287

Google Scholar

[12] Y.P. Bai, J.D. Xing, Y.Y. He, et al, Tribological behavior of in situ (Cr, Mo)/Fe3Al-20wt%Al2O3 composites at elevated temperatures, Proc. Inst. Mech. Eng., Part J. 228(2014)904-912.

Google Scholar

[13] S.S. Wu, X.X. Zhongjiang, Interaction between ceramic particles and metal solidification interface, Spec. Cast. Nonferrous Alloys. 000(1998)34-56. (In Chinese).

Google Scholar

[14] S.Z. Li, Z. Deng, X. Zhang, et al, WC-Fe layer with high volume fraction and fracture toughness on cast iron fabricated by in situ solid-phase diffusion, Vacuum. 168(2019)108801.

DOI: 10.1016/j.vacuum.2019.108801

Google Scholar

[15] E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng. 246(1998)221-234.

DOI: 10.1016/s0921-5093(97)00710-7

Google Scholar

[16] J.G. Fu, J. Liu, X.H. Zhu, et al, Research status of influence of micro and nano particles on micro arc oxidation composite coatings, Hot. Work. Technol, 49(2020)19-26. (In Chinese).

Google Scholar

[17] Y.D. Pang, W.P. Chen, J.F. Yang, et al, Effect of TiC/NbC addition on microstructure and mechanical properties of iron matrix composites, Rare Met. Cem. Carbides. 48(2020)45-49. (In Chinese).

Google Scholar

[18] X.Q. Huang, A.W. Zuo, Z. Wang, et al, Performance of iron-based composites reinforced by different SiC contents, Powder Metall. Mater. Sci. Eng. 19(2014)271-277. (In Chinese).

Google Scholar

[19] J. Zhang, N.G. Zhang, Mechanical properties and applications of new composite materials, Beijing University of aeronautics and astronautics press, Chinese, (1993).

Google Scholar

[20] X.J. Cao, J.F. Jin, J.Q. Cao, et al, Wear properties of iron matrix composites reinforced by different types of particles, Mater. Eng. 45(2017)62-67. (In Chinese).

Google Scholar

[21] Z. Wang, J. Tan, B.A. Sun, et al, Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles, Mater. Sci. Eng., A. 600(2014)53-58.

DOI: 10.1016/j.msea.2014.02.003

Google Scholar

[22] C. Kuforiji, M. Nganbe, Powder metallurgy fabrication, characterisation and wear assessment of SS316L-Al2O3 composites, Tribol. Int. 130(2018)339-351.

DOI: 10.1016/j.triboint.2018.10.002

Google Scholar

[23] T. Jiang, J.J. Sun, Y.J. Wang, et al, Strong grain-size effect on martensitic transformation in high-carbon steels made by powder metallurgy, Powder Technol. 363(2020)652-656.

DOI: 10.1016/j.powtec.2020.01.002

Google Scholar

[24] J.W. Zhou, W.Y. He, J.L. Xu, et al, Strengthening mechanism and wear resistance of laser cladding Al2O3/Fe901 composite coating, Acta Optic. Sin. 39(2019)211-219. (In Chinese).

Google Scholar

[25] P. Grant, I Palmer, I. Stone. Spray formed aerospace alloys are high flyers, Mater. World. 7(1999)331-333.

Google Scholar

[26] S.H. Hussain, C.S. Cui, N. Temple, et al, Porosity and microstructure of steel tubes spray-formed by close-coupled atomizer, J. Mater. Process. Technol. 276(2020)116407.

DOI: 10.1016/j.jmatprotec.2019.116407

Google Scholar

[27] H. Rosskamp, M. Ostqathe, F. Thuemmler, et al, Sintered steels with inert hard phase produced by mechanical alloying ball mill, Powder Metall. 39(1996)37-43.

DOI: 10.1179/pom.1996.39.1.37

Google Scholar

[28] Y.P. Bai, J.J. Luo, J.P. Li, et al, Effect of nano-NiAl phase on microstructure and mechanical and oxidation properties of Fe-based alloys, Surf. Technol. 48(2019)144-150. (In Chinese).

Google Scholar

[29] Z.A. Munir, J.B. Holt, Combustion and plasma synthesis of high-temperature materials, VCH, USA, (1990).

Google Scholar

[30] E.V.Z Karimi, A. Moloodi, J.V. Khaki, et al, A study on carbon nanotubes/nanofibers production via SHS method in C-Al-Fe2O3 system, J. Mater. Res. Technol. 7(2018)212-217.

DOI: 10.1016/j.jmrt.2017.06.005

Google Scholar

[31] P. Sahoo, K.J. Koczak, Elevated temperature response of in situ TiC reinforced aluminum copper alloys, Mater. Sci. Eng., 144(1990)25-30.

Google Scholar

[32] D.L. Ye, J.H. Hu, Practical inorganic thermodynamics data Book, Metallurgical industry press, China, 2002. (In Chinese).

Google Scholar

[33] Z.L. Cao, Z.Y. Wang, Handbook of inorganic chemical reaction equations, Hunan science and technology Press, China, 1985. (In Chinese).

Google Scholar

[34] H.Q. Bai, L.S. Zhong, P. Cui, et al, Microstructure and compressive properties of V–V8C7/Fe core-shell rod-reinforced iron-based composite fabricated via two-step in-situ reaction, Vacuum. 176(2020)190302.

DOI: 10.1016/j.vacuum.2020.109302

Google Scholar

[35] Q.Q. He, P.M. Li, Y. Yuan, et al, Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites, Powder Metall. Technol.37(2019)11-17.

Google Scholar

[36] B. Yu, L.Y. He, Z.F. Guan, et al, Preparation and wear-resistant of iron-base surface composites, Spec. Cast. Nonferrous Alloys. 35(2015)1298-1330.

Google Scholar

[37] L.B. Chen, T.H. Cao, R. Wei, et al, Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys, Mater. Sci. Eng., A. 772(2020)138661.

DOI: 10.1016/j.msea.2019.138661

Google Scholar

[38] R.L. Wang, Study on abrasive wear Properties of Al2O3 multiphase Ceramic/high chromium cast iron composites, Hot. Work. Technol. 47(2018)103-106.

Google Scholar

[39] J. Huang, H. Xie, X. Zan, et al, Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel, Surf. Coat. Technol. 383(2020)125282.

DOI: 10.1016/j.surfcoat.2019.125282

Google Scholar

[40] F. Xu, J.G. Li, X.M. Feng, et al, Research on frictional material prepared by Copper-coating Al particles on Iron-based, Hot. Work. Technol. 38(2009)61-63.

Google Scholar

[41] J.J. Ru, H. He, Y.H. Jiang, et al, Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites, J. Alloys Compd. 786(2019)321-329.

DOI: 10.1016/j.jallcom.2019.01.342

Google Scholar

[42] D. Feng, Q.X. Ren, H.Q. Ru, et al, Pressure-less sintering behaviour and mechanical properties of Fe2O3-containing SiC ceramics, J. Alloys Compd. 790(2019)134-140.

DOI: 10.1016/j.jallcom.2019.03.166

Google Scholar

[43] X. Wang, H.F. Ding, Microstructure and performance of iron based composites reinforced by SiC particles with deposition, Aerosp. Mater. Technol. 31(2001)49-53.

Google Scholar

[44] S.Y. Zhang, Z.Y. Xiao, Z.Y. Xi, et al, Study on SiC particle reinforced iron-basedpowder metallurgy composite, J. South China Univ. Technol. 27(1999)106-109. (In Chinese).

Google Scholar

[45] S.S. Wang, B.B. Fan, Y.Q. Chen, et al, Preparation of nickel-coated silicon carbide particle composite powder by in-situ chemical deposition method, Bull. Chin. Ceram. Soc, 33(2014)629-634.

Google Scholar

[46] R. Chang, J.B. Zang, Y.H. Wang, et al, Comparison study of Fe-based matrix composites reinforced with Ti-coated and Mo-coated SiC particles, Mater. Chem. Phys. 204(2018)154-161.

DOI: 10.1016/j.matchemphys.2017.10.007

Google Scholar

[47] X.Y. Chong, M.H. Zhen, Y. Qiu, et al, Electroless copper plating on α-SiC powder and its effect on properties of α-SiC/Fe composites, Surf. Technol. 47(2018)244-249.

Google Scholar

[48] J.F. Liu, Study on the structure and properties of Fe/Al2O3 gradient coatings composite, Univ of Jinan. 2011. (In Chinese).

Google Scholar

[49] X.Q. Huang, The effect of SiC content and particle size on microstructures and wear properties of SiC/Fe-3Cu-C material, Central South Univ. 2014. (In Chinese).

Google Scholar

[50] V.C. Nardone, K.M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scr. Metall. 20(1986)43-48.

DOI: 10.1016/0036-9748(86)90210-3

Google Scholar

[51] R.J. Arsenault, L. Wang, C.R. Feng,et al, Strengthening of composites due to microstructural changes in the matrix, Acta Metall. Mater. 39(1991)47-57.

DOI: 10.1016/0956-7151(91)90327-w

Google Scholar

[52] N. Ramakrishnan, An analytical study on strengthening of particulate reinforced metal matrix composites, Acta Mater. 44(1996)69-77.

DOI: 10.1016/1359-6454(95)00150-9

Google Scholar

[53] F. Maresca, W.A. Curtin, Theory of screw dislocation strengthening in random bcc alloys from dilute to high-entropy, alloys, Acta Mater. 182(2020)144-162.

DOI: 10.1016/j.actamat.2019.10.007

Google Scholar

[54] M.R. Barnett, H. Wang, T. Guo, et al, An orowan precipitate strengthening equation for mechanical twinning in Mg, Int. J. Plast. 112(2019)108-122.

DOI: 10.1016/j.ijplas.2018.08.010

Google Scholar

[55] X.Y. Hou, Y.J. Bi, L. Hao, et al, Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel, Iron Steel. 54(2019)63-67. (In Chinese).

Google Scholar

[56] G.H. Wu, P. Hou, K.M. Wu, et al, Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel, J. Magn. Magn. Mater. 479(2019)43-49.

DOI: 10.1016/j.jmmm.2019.01.109

Google Scholar

[57] J. Ru, Y. Jiang, R. Zhou, et al, Preparation of Ni-encapsulated ZTA particles as precursors to reinforce iron-based composites, Adv. Eng. Mater. 19(2017)170268.

DOI: 10.1002/adem.201700268

Google Scholar

[58] L. Gao, S.M. Liang, R.S. Chen, et al, Correlation of recalescence with grain refinement of magnesium alloys, Trans. Nonferrous Met. Soc. China. 18(2008)s288-s291.

DOI: 10.1016/s1003-6326(10)60219-1

Google Scholar

[59] D. Yang, Y. Liu, H.P. Jiang, et al, A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains, J. Alloys Compd. 823(2020)153729.

DOI: 10.1016/j.jallcom.2020.153729

Google Scholar