Effect of Additives on Thermal Conductivity of Si3N4 Ceramics

Article Preview

Abstract:

Compared with traditional ceramics, Si3N4 ceramics have the characteristics of high theoretical thermal conductivity, high thermal shock resistance, high oxidation resistance, high strength, and strong current carrying capacity. It is a potential high-speed circuit and high-power device for heat dissipation and heat dissipation. Sealing material. For applications in 5these fields, β-Si3N4 with a relatively stable structure and high thermal conductivity is an ideal material. However, β-Si3N4 powder is difficult to sinter as a raw material. Therefore, the prepared Si3N4 generally has a low density, and there are various defects in the crystal. The existence of these defects will cause interference and scattering of heat in the transfer process. Limits the application of β-Si3N4 ceramics. Studies have shown that the introduction of different additives can form a liquid phase at high temperatures, which can effectively reduce the firing temperature of the sample and increase the density. At the same time, it can also remove lattice oxygen, weaken the intercrystalline phase, and promote the α→β phase transition. Thereby improving the thermal conductivity and sintering performance of Si3N4 ceramics. Therefore, this article reviews the types of additives and their effects on the properties of Si3N4 ceramics and their mechanism. Trying to find an additive system for the preparation of high thermal conductivity Si3N4 ceramics with excellent comprehensive performance, hoping to provide help for the work and researchers engaged in the research on the thermal conductivity of Si3N4 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

185-195

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dewei Fan, Study on fabrication and properties of silicon nitride ceramics with high thermal conductivity , Shandong university of technology, (2012).

Google Scholar

[2] Haggerty J S, Lightfoot A ,Opportunities for Enhancing the Thermal Conductivities of SiC and Si3N4 Ceramics Through Improved Processing, Ceramic Engineering and Science Proceedings, Volume 16, Issue 4,2008:475-487.

DOI: 10.1002/9780470314715.ch52

Google Scholar

[3] B. Vassiliou, F. G. Wilde, A hexagonal form of silicon nitride, Nature 179.4556 (1957): 435.

DOI: 10.1038/179435b0

Google Scholar

[4] E. T. Turkdogan , P. M. Bills , V. A. Tippett, Silicon nitrides: Some physico-chemical properties, Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 8(5):296-302.

DOI: 10.1002/jctb.5010080504

Google Scholar

[5] Zhu X, Zhou Y, Hirao K, et al, Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering, Science & Technology of Advanced Materials,2010,11(6):1-12.

DOI: 10.1088/1468-6996/11/6/065001

Google Scholar

[6] Nishimura T, Xu X, Kimoto K, et al, Fabrication of silicon nitride nanoceramics-powder preparation and sintering, Science & Technology of Advanced Materials, 2007, 8(7):635-643.

DOI: 10.1016/j.stam.2007.08.006

Google Scholar

[7] Hao W, Wang X, Yang W, et al, Non-isothermal crystallization kinetics of recycled PET-Si3N4, nanocomposites, Polymer Testing, 2012, 31(1):110-116.

DOI: 10.1016/j.polymertesting.2011.10.003

Google Scholar

[8] Klemm H, Silicon Nitride for High-Temperature Applications, Journal of the American Ceramic Society, 2010, 93(6):1501-1522.

DOI: 10.1111/j.1551-2916.2010.03839.x

Google Scholar

[9] Takayuki N, Trends in silicon nitride substrate with high thermal conductivity for power module. Ceramics,2012, 47(1): 34-41.

Google Scholar

[10] Watari K, Hirao K, Brito M E, et al, Factors to enhance enhance thermal conducticity of beta-Si3N4 ceramics, Advances in Technology of Materials and Materials Processing Journal(ATM), 2005, 7(2): 191-202.

Google Scholar

[11] Jianfeng Tong ,Lingsheng Zhong, Microstructure and performance of silicon nitride ceramics with Lu2O3 Additives, National High-tech Ceramics Annual Conference , (2008).

Google Scholar

[12] Hirao K, Kitayama M ,Watari K , et al, Thermal conductivity of β-Si3N4: Effect of rare-earth , Journal of the American Ceramic Society, 2010, 84(2):353-58.

DOI: 10.1111/j.1151-2916.2001.tb00662.x

Google Scholar

[13] Zhu X, Zhou Y, Hirao K, Effect of Sintering additive composition on the processing and thermal conductivity of sintered reaction-bonded Si3N4, Journal of the American Ceramic Society, 2010, 87(7):1398-1400.

DOI: 10.1111/j.1151-2916.2004.tb07747.x

Google Scholar

[14] Krishnarao RV, Subrahmanyam J. Sintering of MoSi2 by reacting (Mo+Si3N4) compacts. Mater Sci Eng A 2003;352(1):340-3.

DOI: 10.1016/s0921-5093(02)00744-x

Google Scholar

[15] M. Kitayama, K. Hirao, S. Kanzaki, Effect of rare earth oxide additives on the phase transformation rates of Si3N4, Journal of the American Ceramic Society, 2006, 89, (8), 2612-2618.

DOI: 10.1111/j.1551-2916.2006.01106.x

Google Scholar

[16] Li Y , Han W , Chen G , et al, Effect of in-situ formed MoSi2 on phase transformation and thermal diffusivity of spark plasma sintered silicon nitride, Composites Part B, 116 (2017): 382-387.

DOI: 10.1016/j.compositesb.2016.10.080

Google Scholar

[17] Yongxia Li, Research on Preparation and Performance of High Performance Silicon Nitride , Harbin Institute of Technology, (2013).

Google Scholar

[18] Matovic, B., et al, Thermal Conductivity of Pressureless Sintered Silicon Nitride Materials with LiYO2 Additive, Science of Sintering 36.1 (2004): 3-9.

DOI: 10.2298/sos0401003m

Google Scholar

[19] Hirosaki N, Okamoto Y, Munakata F, et al, Effect of seeding on the thermal conductivity of self-reinforced silicon nitride, Journal of the European Ceramic Society, 1999, 19(12): 2183-2187.

DOI: 10.1016/s0955-2219(99)00030-8

Google Scholar

[20] H.J. Kleebe, M.J. Hoffmann, M. Ruhle, Influence of secondary phase chemistry on grain-boundary film thickness in silicon-nitride, Z. Met. 83 (1992) 610–617.

DOI: 10.1515/ijmr-1992-830808

Google Scholar

[21] M. Mitomo, S. Uenosono, Microstructural development during gas-pressure sintering of alpha-silicon nitride, J. Am. Ceram. Soc. 75 (1992) 103–108.

DOI: 10.1111/j.1151-2916.1992.tb05449.x

Google Scholar

[22] M. Müller, B. Werner, K. Regina, Processing of micro-components made of sintered reaction-bonded silicon nitride, Ceramics International, (2009): 2577-2585.

DOI: 10.1016/j.ceramint.2009.02.013

Google Scholar

[23] N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, Effect of grain growth on the thermal conductivity of silicon nitride, Journal of the Ceramic Society of Japan, vol. 104, no. 1205, p.49–53, (1996).

DOI: 10.2109/jcersj.104.49

Google Scholar

[24] J.S. Park, S.M. Lee, Y.S. Han, H.J Hwang, and S.S. Ryu, Effects of debinding atmosphere on properties of sintered reaction-bonded Si3N4 prepared by tape casting method, Journal of the Korean Ceramic Society, vol. 53, no. 6, p.622–627, (2016).

DOI: 10.4191/kcers.2016.53.6.622

Google Scholar

[25] G.Shin-I, L.Yinsheng, K. Jae-Woong, et al, Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: The particle size effects of MgO additive, Advances in Materials Science and Engineering, 2018, 2018:1-5.

DOI: 10.1155/2018/4263497

Google Scholar

[26] Y.S. Duan , J.S. Zzhang , Rare earth oxides on property of pressureless sintered Si3N4 ceramics, Journal of Inorganic Materials , 2017, 32(12):1275-1279.

Google Scholar

[27] Kitayama M, Hirao K, Watari K, et al, Thermal conductivity of β-Si3N4: effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives, Journal of the American Ceramic Society, 2010, 84(2):353-58.

DOI: 10.1111/j.1151-2916.2001.tb00662.x

Google Scholar

[28] M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, Liquid to solid like transitions of molecularly thin films under shear, Journal of Chemical Physics, vol. 93, no. 3, pp.1895-1906, (1990).

DOI: 10.1063/1.459067

Google Scholar

[29] Kitayama M, Hirao K, Tsuge A, et al, Thermal Conductivity of β-Si3N4: Effect of Lattice Oxygen, Journal of the American Ceramic Society, 2010, 83(8):1985-1992.

DOI: 10.1111/j.1151-2916.2000.tb01501.x

Google Scholar

[30] Zhu X W, Sakka Y, Zhou Y, et al, A strategy for fabricating textured silicon nitride with enhanced thermal conductivity, Journal of the European Ceramic Society, 2014, 34(10):2585-2589.

DOI: 10.1016/j.jeurceramsoc.2014.01.025

Google Scholar

[31] Hayashi H, Hirao K, Toriyama M, et al, MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride, Cheminform, 2010, 84(12):3060-3062.

DOI: 10.1002/chin.200210009

Google Scholar

[32] Z.H. Liang, G.H. Peng , Abrication of high thermal conductivity β-Si3N4 ceramics with as MgSiN2 additive, Journal of the Chinese Ceramic Society, 2010, 38(10):1948-1952.

Google Scholar

[33] Jiang, Guo Jian, Xu J Y , Shen H , et al, Fabrication of Silicon Nitride Ceramics with Magnesium Silicon Nitride and Yttrium Oxide as Sintering Additives, Advanced Materials Research, 2010, 177:235-237.

DOI: 10.4028/www.scientific.net/amr.177.235

Google Scholar

[34] N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, and Y. Akimune, Thermal conductivity of gas-pressure-sintered silicon nitride, J. Am. Ceram. Soc, 79(11), 2878–2882 (1996).

DOI: 10.1111/j.1151-2916.1996.tb08721.x

Google Scholar

[35] W. D. Kingery and M. C. McQuarrie, Thermal conductivity: I, concepts of measurement and factors affecting thermal conductivity of ceramic materials, Journal of the American Ceramic Society 37.2 (1954): 67-72.

DOI: 10.1111/j.1551-2916.1954.tb20100.x

Google Scholar

[36] S. K. Estreicher, T. M. Gibbons, and M. B. Bebek, Thermal phonons and defects in semiconductors: The physics reason why defects reduce heat flow, and how to control it, J. Appl. Phys. 117, (2015)112801.

DOI: 10.1063/1.4913826

Google Scholar

[37] Dow H S , Kim W S , Lee J W, Thermal and electrical properties of silicon nitride substrates, AIP Advances, 2017, 7(9):095022.

DOI: 10.1063/1.4996314

Google Scholar

[38] D.S. Liu, Pressureless sintering of silicon nitrdie protecting tube with MgO-CeO2-Si system, Research on Urban Construction Theory: Electronic Edition, 2011(25).

Google Scholar

[39] Jingxian Zhang, Study on Low Temperature Sintering and Properties of High Thermal Conductivity Silicon Nitride Ceramics, Vacuum electronics , 2017(5)16-19.

Google Scholar

[40] Liang H, Zeng Y, Zuo K, et al, Mechanical properties and thermal conductivity of Si3N4, ceramics with YF3, and MgO as sintering additives, Ceramics International, 2016, 42(14):15679-15686.

DOI: 10.1016/j.ceramint.2016.07.024

Google Scholar

[41] B. Bai, Study on Sintering and Properties of Silicon Nitride Ceramics with Rare Earth Fluorides Additives, Tsinghua University, Beijing, China, (2012).

Google Scholar

[42] Wang Z H, Bai B, Ning X S, Effect of rare earth additives on properties of silicon nitride ceramics, Advances in Applied Ceramics, 2014, 113(3):173-177.

DOI: 10.1179/1743676113y.0000000138

Google Scholar

[43] Changling Zhou, Research on Sintering Densification of β-Silicon Nitride Ceramics, Bulletin of The Chinese Ceramic Society, 2004, 23(6):52-55.

Google Scholar

[44] Li Y, Kim H, Wu H, et al, Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C, Journal of the American Ceramic Society, 101.9 (2018): 4128-4136.

Google Scholar

[45] Lee H M , Lee E B , Kim D L , et al, Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramic, Ceramics International, 2016, 42(15):17466-17471.

DOI: 10.1016/j.ceramint.2016.08.051

Google Scholar