[1]
Dewei Fan, Study on fabrication and properties of silicon nitride ceramics with high thermal conductivity , Shandong university of technology, (2012).
Google Scholar
[2]
Haggerty J S, Lightfoot A ,Opportunities for Enhancing the Thermal Conductivities of SiC and Si3N4 Ceramics Through Improved Processing, Ceramic Engineering and Science Proceedings, Volume 16, Issue 4,2008:475-487.
DOI: 10.1002/9780470314715.ch52
Google Scholar
[3]
B. Vassiliou, F. G. Wilde, A hexagonal form of silicon nitride, Nature 179.4556 (1957): 435.
DOI: 10.1038/179435b0
Google Scholar
[4]
E. T. Turkdogan , P. M. Bills , V. A. Tippett, Silicon nitrides: Some physico-chemical properties, Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 8(5):296-302.
DOI: 10.1002/jctb.5010080504
Google Scholar
[5]
Zhu X, Zhou Y, Hirao K, et al, Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering, Science & Technology of Advanced Materials,2010,11(6):1-12.
DOI: 10.1088/1468-6996/11/6/065001
Google Scholar
[6]
Nishimura T, Xu X, Kimoto K, et al, Fabrication of silicon nitride nanoceramics-powder preparation and sintering, Science & Technology of Advanced Materials, 2007, 8(7):635-643.
DOI: 10.1016/j.stam.2007.08.006
Google Scholar
[7]
Hao W, Wang X, Yang W, et al, Non-isothermal crystallization kinetics of recycled PET-Si3N4, nanocomposites, Polymer Testing, 2012, 31(1):110-116.
DOI: 10.1016/j.polymertesting.2011.10.003
Google Scholar
[8]
Klemm H, Silicon Nitride for High-Temperature Applications, Journal of the American Ceramic Society, 2010, 93(6):1501-1522.
DOI: 10.1111/j.1551-2916.2010.03839.x
Google Scholar
[9]
Takayuki N, Trends in silicon nitride substrate with high thermal conductivity for power module. Ceramics,2012, 47(1): 34-41.
Google Scholar
[10]
Watari K, Hirao K, Brito M E, et al, Factors to enhance enhance thermal conducticity of beta-Si3N4 ceramics, Advances in Technology of Materials and Materials Processing Journal(ATM), 2005, 7(2): 191-202.
Google Scholar
[11]
Jianfeng Tong ,Lingsheng Zhong, Microstructure and performance of silicon nitride ceramics with Lu2O3 Additives, National High-tech Ceramics Annual Conference , (2008).
Google Scholar
[12]
Hirao K, Kitayama M ,Watari K , et al, Thermal conductivity of β-Si3N4: Effect of rare-earth , Journal of the American Ceramic Society, 2010, 84(2):353-58.
DOI: 10.1111/j.1151-2916.2001.tb00662.x
Google Scholar
[13]
Zhu X, Zhou Y, Hirao K, Effect of Sintering additive composition on the processing and thermal conductivity of sintered reaction-bonded Si3N4, Journal of the American Ceramic Society, 2010, 87(7):1398-1400.
DOI: 10.1111/j.1151-2916.2004.tb07747.x
Google Scholar
[14]
Krishnarao RV, Subrahmanyam J. Sintering of MoSi2 by reacting (Mo+Si3N4) compacts. Mater Sci Eng A 2003;352(1):340-3.
DOI: 10.1016/s0921-5093(02)00744-x
Google Scholar
[15]
M. Kitayama, K. Hirao, S. Kanzaki, Effect of rare earth oxide additives on the phase transformation rates of Si3N4, Journal of the American Ceramic Society, 2006, 89, (8), 2612-2618.
DOI: 10.1111/j.1551-2916.2006.01106.x
Google Scholar
[16]
Li Y , Han W , Chen G , et al, Effect of in-situ formed MoSi2 on phase transformation and thermal diffusivity of spark plasma sintered silicon nitride, Composites Part B, 116 (2017): 382-387.
DOI: 10.1016/j.compositesb.2016.10.080
Google Scholar
[17]
Yongxia Li, Research on Preparation and Performance of High Performance Silicon Nitride , Harbin Institute of Technology, (2013).
Google Scholar
[18]
Matovic, B., et al, Thermal Conductivity of Pressureless Sintered Silicon Nitride Materials with LiYO2 Additive, Science of Sintering 36.1 (2004): 3-9.
DOI: 10.2298/sos0401003m
Google Scholar
[19]
Hirosaki N, Okamoto Y, Munakata F, et al, Effect of seeding on the thermal conductivity of self-reinforced silicon nitride, Journal of the European Ceramic Society, 1999, 19(12): 2183-2187.
DOI: 10.1016/s0955-2219(99)00030-8
Google Scholar
[20]
H.J. Kleebe, M.J. Hoffmann, M. Ruhle, Influence of secondary phase chemistry on grain-boundary film thickness in silicon-nitride, Z. Met. 83 (1992) 610–617.
DOI: 10.1515/ijmr-1992-830808
Google Scholar
[21]
M. Mitomo, S. Uenosono, Microstructural development during gas-pressure sintering of alpha-silicon nitride, J. Am. Ceram. Soc. 75 (1992) 103–108.
DOI: 10.1111/j.1151-2916.1992.tb05449.x
Google Scholar
[22]
M. Müller, B. Werner, K. Regina, Processing of micro-components made of sintered reaction-bonded silicon nitride, Ceramics International, (2009): 2577-2585.
DOI: 10.1016/j.ceramint.2009.02.013
Google Scholar
[23]
N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, Effect of grain growth on the thermal conductivity of silicon nitride, Journal of the Ceramic Society of Japan, vol. 104, no. 1205, p.49–53, (1996).
DOI: 10.2109/jcersj.104.49
Google Scholar
[24]
J.S. Park, S.M. Lee, Y.S. Han, H.J Hwang, and S.S. Ryu, Effects of debinding atmosphere on properties of sintered reaction-bonded Si3N4 prepared by tape casting method, Journal of the Korean Ceramic Society, vol. 53, no. 6, p.622–627, (2016).
DOI: 10.4191/kcers.2016.53.6.622
Google Scholar
[25]
G.Shin-I, L.Yinsheng, K. Jae-Woong, et al, Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: The particle size effects of MgO additive, Advances in Materials Science and Engineering, 2018, 2018:1-5.
DOI: 10.1155/2018/4263497
Google Scholar
[26]
Y.S. Duan , J.S. Zzhang , Rare earth oxides on property of pressureless sintered Si3N4 ceramics, Journal of Inorganic Materials , 2017, 32(12):1275-1279.
Google Scholar
[27]
Kitayama M, Hirao K, Watari K, et al, Thermal conductivity of β-Si3N4: effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives, Journal of the American Ceramic Society, 2010, 84(2):353-58.
DOI: 10.1111/j.1151-2916.2001.tb00662.x
Google Scholar
[28]
M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, Liquid to solid like transitions of molecularly thin films under shear, Journal of Chemical Physics, vol. 93, no. 3, pp.1895-1906, (1990).
DOI: 10.1063/1.459067
Google Scholar
[29]
Kitayama M, Hirao K, Tsuge A, et al, Thermal Conductivity of β-Si3N4: Effect of Lattice Oxygen, Journal of the American Ceramic Society, 2010, 83(8):1985-1992.
DOI: 10.1111/j.1151-2916.2000.tb01501.x
Google Scholar
[30]
Zhu X W, Sakka Y, Zhou Y, et al, A strategy for fabricating textured silicon nitride with enhanced thermal conductivity, Journal of the European Ceramic Society, 2014, 34(10):2585-2589.
DOI: 10.1016/j.jeurceramsoc.2014.01.025
Google Scholar
[31]
Hayashi H, Hirao K, Toriyama M, et al, MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride, Cheminform, 2010, 84(12):3060-3062.
DOI: 10.1002/chin.200210009
Google Scholar
[32]
Z.H. Liang, G.H. Peng , Abrication of high thermal conductivity β-Si3N4 ceramics with as MgSiN2 additive, Journal of the Chinese Ceramic Society, 2010, 38(10):1948-1952.
Google Scholar
[33]
Jiang, Guo Jian, Xu J Y , Shen H , et al, Fabrication of Silicon Nitride Ceramics with Magnesium Silicon Nitride and Yttrium Oxide as Sintering Additives, Advanced Materials Research, 2010, 177:235-237.
DOI: 10.4028/www.scientific.net/amr.177.235
Google Scholar
[34]
N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, and Y. Akimune, Thermal conductivity of gas-pressure-sintered silicon nitride, J. Am. Ceram. Soc, 79(11), 2878–2882 (1996).
DOI: 10.1111/j.1151-2916.1996.tb08721.x
Google Scholar
[35]
W. D. Kingery and M. C. McQuarrie, Thermal conductivity: I, concepts of measurement and factors affecting thermal conductivity of ceramic materials, Journal of the American Ceramic Society 37.2 (1954): 67-72.
DOI: 10.1111/j.1551-2916.1954.tb20100.x
Google Scholar
[36]
S. K. Estreicher, T. M. Gibbons, and M. B. Bebek, Thermal phonons and defects in semiconductors: The physics reason why defects reduce heat flow, and how to control it, J. Appl. Phys. 117, (2015)112801.
DOI: 10.1063/1.4913826
Google Scholar
[37]
Dow H S , Kim W S , Lee J W, Thermal and electrical properties of silicon nitride substrates, AIP Advances, 2017, 7(9):095022.
DOI: 10.1063/1.4996314
Google Scholar
[38]
D.S. Liu, Pressureless sintering of silicon nitrdie protecting tube with MgO-CeO2-Si system, Research on Urban Construction Theory: Electronic Edition, 2011(25).
Google Scholar
[39]
Jingxian Zhang, Study on Low Temperature Sintering and Properties of High Thermal Conductivity Silicon Nitride Ceramics, Vacuum electronics , 2017(5)16-19.
Google Scholar
[40]
Liang H, Zeng Y, Zuo K, et al, Mechanical properties and thermal conductivity of Si3N4, ceramics with YF3, and MgO as sintering additives, Ceramics International, 2016, 42(14):15679-15686.
DOI: 10.1016/j.ceramint.2016.07.024
Google Scholar
[41]
B. Bai, Study on Sintering and Properties of Silicon Nitride Ceramics with Rare Earth Fluorides Additives, Tsinghua University, Beijing, China, (2012).
Google Scholar
[42]
Wang Z H, Bai B, Ning X S, Effect of rare earth additives on properties of silicon nitride ceramics, Advances in Applied Ceramics, 2014, 113(3):173-177.
DOI: 10.1179/1743676113y.0000000138
Google Scholar
[43]
Changling Zhou, Research on Sintering Densification of β-Silicon Nitride Ceramics, Bulletin of The Chinese Ceramic Society, 2004, 23(6):52-55.
Google Scholar
[44]
Li Y, Kim H, Wu H, et al, Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C, Journal of the American Ceramic Society, 101.9 (2018): 4128-4136.
Google Scholar
[45]
Lee H M , Lee E B , Kim D L , et al, Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramic, Ceramics International, 2016, 42(15):17466-17471.
DOI: 10.1016/j.ceramint.2016.08.051
Google Scholar