Adsorption Properties Graphene-Based Composites on Lead(II) Ions

Article Preview

Abstract:

The graphene-based composites was prepared by the oxidation of graphene nano-platelets. The characterization results of thermogravimetric analysis (TGA) and Fourier transform infrared spectrum (FT-IR) indicated that acid treatment can generate abundant functional groups on the surface of graphene. The determined equilibrium adsorption capacity of FGN for lead was 57.765 mg/g, which is higher than that of many currently reports. The adsorption process was completed within 40 min and the adsorption isotherms confirmed to Langmuir classical isotherms models.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

137-144

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tuzen, Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey, Food Chem Toxicol, 47(2009) 1785-1790.

DOI: 10.1016/j.fct.2009.04.029

Google Scholar

[2] B.A. Fowler, G.F. Nordberg, M. Nordberg, L. Friberg, Handbook on the Toxicology of Metals, Academic Press, (2011).

Google Scholar

[3] L. Järup, Hazards of heavy metal contamination, Brit Med Bull, 68(2003) 167-182.

Google Scholar

[4] X. Huo, L. Peng, X. Xu, L. Zheng, B. Qiu, Z. Qi, B. Zhang, D. Han, Z. Piao, Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China, Environ Health Persp, 115(2007) 1113.

DOI: 10.1289/ehp.9697

Google Scholar

[5] C.M. Lytle, F.W. Lytle, N. Yang, J. Qian, D. Hansen, A. Zayed, N. Terry, Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification, Environ Sci Technol, 32(1998) 3087-3093.

DOI: 10.1021/es980089x

Google Scholar

[6] V.K. Verma, S. Tewari, J. Rai, Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes, Bioresource Technol, 99(2008) 1932-1938.

DOI: 10.1016/j.biortech.2007.03.042

Google Scholar

[7] S. Mauchauffée, E. Meux, Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater, Chemosphere, 69(2007) 763-768.

DOI: 10.1016/j.chemosphere.2007.05.006

Google Scholar

[8] H.A. Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 164(2004) 105-110.

DOI: 10.1016/s0011-9164(04)00169-9

Google Scholar

[9] G. Chen, Electrochemical technologies in wastewater treatment, Sep Purif Technol, 38(2004) 11-41.

Google Scholar

[10] V.K. Gupta, I. Ali, Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater, Sep Purif Technol, 18(2000) 131-140.

DOI: 10.1016/s1383-5866(99)00058-1

Google Scholar

[11] M.I. Ansari, A. Malik, Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater, Bioresource Technol, 98(2007) 3149-3153.

DOI: 10.1016/j.biortech.2006.10.008

Google Scholar

[12] Y. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res, 39(2005) 605-609.

DOI: 10.1016/j.watres.2004.11.004

Google Scholar

[13] M. Imamoglu, O. Tekir, Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228(2008) 108-113.

DOI: 10.1016/j.desal.2007.08.011

Google Scholar

[14] Q. Feng, Q. Lin, F. Gong, S. Sugita, M. Shoya, Adsorption of lead and mercury by rice husk ash, J Colloid Interf Sci, 278(2004) 1-8.

DOI: 10.1016/j.jcis.2004.05.030

Google Scholar

[15] B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The removal of heavy metals from aqueous solutions by sawdust adsorption-removal of lead and comparison of its adsorption with copper, J Hazard Mater, 84(2001) 83-94.

DOI: 10.1016/s0304-3894(01)00198-4

Google Scholar

[16] F.F. Orumwense, Removal of lead from water by adsorption on a kaolinitic clay, J Chem Technol Biot, 65(1996) 363-369.

DOI: 10.1002/(sici)1097-4660(199604)65:4<363::aid-jctb435>3.0.co;2-3

Google Scholar

[17] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials, 6(2007) 183-191.

Google Scholar

[18] C. Stampfer, E. Schurtenberger, F. Molitor, J. Guttinger, T. Ihn, K. Ensslin, Tunable graphene single electron transistor, Nano Lett, 8(2008) 2378-2383.

DOI: 10.1021/nl801225h

Google Scholar

[19] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 319(2008) 1229-1232.

DOI: 10.1126/science.1150878

Google Scholar

[20] G. Lee, B.S. Kim, Biological reduction of graphene oxide using plant leaf extracts, Biotechnol Progr, (2014).

Google Scholar

[21] T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification, J Hazard Mater, 186(2011) 921-931.

DOI: 10.1016/j.jhazmat.2010.11.100

Google Scholar

[22] S. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, A. Cao, Folding/aggregation of graphene oxide and its application in Cu2+ removal, J Colloid Interf Sci, 351(2010) 122-127.

DOI: 10.1016/j.jcis.2010.07.042

Google Scholar

[23] J.D. Wuest, A. Rochefort, Strong adsorption of aminotriazines on graphene, Chem Commun, 46(2010) 2923-2925.

DOI: 10.1039/b926286e

Google Scholar

[24] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue, J Hazard Mater, 215(2012) 272-279.

DOI: 10.1016/j.jhazmat.2012.02.068

Google Scholar

[25] Y. Li, P. Zhang, Q. Du, Adsorption of fluoride from aqueous solution by graphene, J colloid interface science, 363(2011): 348-354.

DOI: 10.1016/j.jcis.2011.07.032

Google Scholar

[26] H. Ma, Y. Zhang, Q. Hu, D. Yan, Z. Yu, M. Zhai, Chemical reduction and removal of Cr (VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide, J. Mater. Chem., 22(2012) 5914-5916.

DOI: 10.1039/c2jm00145d

Google Scholar

[27] T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification, J Hazard Mater, 186(2011) 921-931.

DOI: 10.1016/j.jhazmat.2010.11.100

Google Scholar

[28] W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang, Highly Efficient removal of Cu (II) from aqueous solution by using graphene oxide, Water, Air, & Soil Pollution, 224(2013) 1-8.

DOI: 10.1007/s11270-012-1372-5

Google Scholar

[29] X.J. Deng, L.L. Lu, H.W. Li, F. Luo, The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method, J Hazard Mater, 183(2010) 923-930.

DOI: 10.1016/j.jhazmat.2010.07.117

Google Scholar

[30] I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43(2005) 3124-3131.

DOI: 10.1016/j.carbon.2005.06.019

Google Scholar

[31] E. Frackowiak, Carbon materials for supercapacitor application, Phys Chem Chem Phys, 9(2007) 1774-1785.

Google Scholar

[32] L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, SiO2/graphene composite for highly selective adsorption of Pb (II) ion, J Colloid Interf Sci, 369(2012) 381-387.

DOI: 10.1016/j.jcis.2011.12.023

Google Scholar

[33] V. Chandra, J. Park, Y. Chun, J.W. Lee, I. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS nano, 4(2010) 3979-3986.

DOI: 10.1021/nn1008897

Google Scholar

[34] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[35] S. Yang, X. Feng, S. Ivanovici, K. Müllen, Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage, Angewandte Chemie International Edition, 49(2010) 8408-8411.

DOI: 10.1002/anie.201003485

Google Scholar

[36] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv Mater, 22(2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[37] S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon, 49(2011) 3019-3023.

DOI: 10.1016/j.carbon.2011.02.071

Google Scholar

[38] M.A. Atieh, O.Y. Bakather, B.S. Tawabini, A.A. Bukhari, M. Khaled, M. Alharthi, M. Fettouhi, F.A. Abuilaiwi, Removal of chromium (III) from Water by using modified and nonmodified carbon nanotubes, Journal of Nanomaterials, 2010(2010) 17.

DOI: 10.1155/2010/232378

Google Scholar