Metal Organic Frameworks-Templated Hollow Mn2NiO4 Flower for Enhanced Supercapacitor Electrodes

Article Preview

Abstract:

A facile strategy of uniform flower-shaped binary-metal-based metal-organic frameworks (MOFs) has been successfully synthesized via a simple hydrothermal method as the precursor of porous Mn2NiO4 nanostructures. After heat treatment at different temperatures, the as-prepared Mn2NiO4 inherits the morphologies of MOFs and can hold until 450°C. This porous Mn2NiO4, used as supercapacitor electrodes, exhibits a high specific capacitance (531.5 F g-1 at a current density of 1.0 A g-1), with a relatively high specific surface area (114.2 m2 g-1). The high capacitance is mainly attributed to the porous and hierarchical structure, which facilitates fast diffusion of active ions, improves structural stability and large contact area between Mn2NiO4 and the electrolyte. The developed synthetic strategy may provide design guidelines for constructing advanced ternary nanostructured supercapacitors electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-73

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. -C. Zhou, J. R. Long, and O. M. Yaghi. Introduction to metal-organic frameworks. Chemical reviews, vol. 112, no. 2, p.673–4, Feb. (2012).

Google Scholar

[2] Rakhi RB, Chen W, Cha D, Alshareef HN. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12: 2559–2567.

DOI: 10.1021/nl300779a

Google Scholar

[3] Xia X, Tu J, Zhang Y, Mai Y, Wang X, Gu C, Zhao X. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2: 1835–1841.

DOI: 10.1039/c1ra00771h

Google Scholar

[4] G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guégan. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53. Chem. Commun. 2003, 2976–2977.

DOI: 10.1039/b308903g

Google Scholar

[5] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature2000, 404, 982–986.

DOI: 10.1038/35010088

Google Scholar

[6] H. Ehrenberg, B. Schwarz and H. Weitzel. Magnetic phase diagrams of α-MnMoO4. J. Magn. Magn. Mater., 2006, 305, 57.

DOI: 10.1016/j.jmmm.2005.11.027

Google Scholar

[7] B. Liu, S. H. Yu, L. J. Li, Q. Zhang and K. Jiang, Angew. Chem., Int. Ed., 2004, 43, 4745.

Google Scholar

[8] Wanlu Yanga, Zan Gao, Jing Ma, Jun Wang, Bin Wanga, Lianhe Liu. Effects of solvent on the morphology of nanostructured Co3O4 and itsapplication for high-performance supercapacitors. Electrochimica Acta 112 (2013) 378–385.

DOI: 10.1016/j.electacta.2013.08.056

Google Scholar

[9] Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6: 2690–2695.

DOI: 10.1021/nl061576a

Google Scholar

[10] Jiang H, Zhao T, Li C, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21: 3818–3823.

DOI: 10.1039/c0jm03830j

Google Scholar

[11] Xiong S, Yuan C, Zhang X, Qian Y. Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors. CrystEngComm 13: 626–632.

DOI: 10.1039/c002610g

Google Scholar

[12] Patricia Horcajada, Christian Serre, María Vallet-Regí, Muriel Sebban, Francis Taulelle, Gérard Fére. Metal–Organic Frameworks as Efficient Materials for Drug. Angewandte Chemie Volume 118, Issue 36, pages 6120–6124, September 11, (2006).

DOI: 10.1002/ange.200601878

Google Scholar

[13] M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houk. Luminescent metal–organic frameworks. Chem. Soc. Rev., 2009, 38, 1330-13.

DOI: 10.1039/b802352m

Google Scholar

[14] Pang H, Gao F, Chen Q, Liu R, Lu Q. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans 41: 5862–5868.

DOI: 10.1039/c2dt12494g

Google Scholar

[15] Yufei Zhang , Laiquan Li , Haiquan Su , Wei Huang and Xiaochen Dong. Binary metal oxide: advanced energy storage materials in supercapacitors.

Google Scholar