Local Refinement for Graph Partitioning Based on Level Structure

Article Preview

Abstract:

Graph partitioning is a fundamental problem in several scientific and engineering applications. In this paper, we propose a heuristic local refinement algorithm for graph partitioning, which seeks to improve the quality of separators by reducing the width of the level structure. The experiments reported in this paper show that the use of our local refinement algorithm results in a considerable improvement in the quality of partitions over conventional graph partitioning scheme based on level structure.

You have full access to the following eBook

Info:

Periodical:

Pages:

257-261

Citation:

Online since:

September 2011

Export:

Share:

Citation:

[1] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science. 1 (1976) 237-267.

DOI: 10.1016/0304-3975(76)90059-1

Google Scholar

[2] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177-189.

DOI: 10.1137/0136016

Google Scholar

[3] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphics, The Bell Sys. Tech. Journal. (1970) 291-307.

DOI: 10.1002/j.1538-7305.1970.tb01770.x

Google Scholar

[4] C. Fiduccia, R. Mattheyses, A linear time heuristic for improving network partitions, In Proc. 19th IEEE Design Automation Conference. (1982) 175-181.

DOI: 10.1109/dac.1982.1585498

Google Scholar

[5] H.D. Simon, S. Teng, How good is recursive bisection, SIAM J. Scientific Computing. 18 (1997) 1436-1445.

DOI: 10.1137/s1064827593255135

Google Scholar

[6] J. Gilbert, G. Miller, S. Teng, Geometric mesh partitioning: implementation and experiments, In Proc. 9th Int. Parallel Processing Symposium. (1995) 418-427.

DOI: 10.1109/ipps.1995.395965

Google Scholar

[7] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and Distributed Computing. 48 (1998) 96-129.

DOI: 10.1006/jpdc.1997.1404

Google Scholar

[8] J. Cong, M. Smith, A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design, In Proc. ACM/IEEE Design Automation Conference. (1993) 755-760.

DOI: 10.1145/157485.165119

Google Scholar

[9] A. Pothen, H.D. Simon, K.P. Liu, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. on Matrix Analysis and Applications. 11 (1990) 430-452.

DOI: 10.1137/0611030

Google Scholar

[10] H.D. Simon, Partitioning of unstructured problems for parallel processing, Computing Systems in Engineering. 2 (1991) 135-148.

DOI: 10.1016/0956-0521(91)90014-v

Google Scholar

[11] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning, Oper. Res. 37 (1989) 865-892.

DOI: 10.1287/opre.37.6.865

Google Scholar

[12] E. Rolland, H. Pirkul, F. Glover, Tabu search for graph partitioning, Ann. Oper. Res. 63 (1996) 209-232.

DOI: 10.1007/bf02125455

Google Scholar

[13] T.N. Bui, B. Moon, Genetic algorithm and graph partitioning, IEEE Transactions on Computers. 45 (1996) 841-855.

DOI: 10.1109/12.508322

Google Scholar

[14] N.E. Gibbs, W.G. Jr. Poole, P.K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 13 (1976) 236-250.

DOI: 10.1137/0713023

Google Scholar

[15] Matrix Market on http: /math. nist. gov/MatrixMarket.

Google Scholar