[1]
JD Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of 1st International Conference on Genetic Algorithms. Lawrencee Erlbaum, 1985, 93-100.
Google Scholar
[2]
CM Fonseca, PJ Fleming. Genetic algorithm for multi-objective optimization: formulation, discussion and generation. Forrest S. Proc. of the 5th Int'l Conf. on Genetic Algorithms. San Mateo: Morgan Kauffman Publishers, 1993, 416−423.
Google Scholar
[3]
N . Srinivas, and K. Deb , Multiobjective optimization using non-dominated sorting in genetic algorithms, Evolutionary Computation, 2(1994)221−248.
DOI: 10.1162/evco.1994.2.3.221
Google Scholar
[4]
J. Horn, N. Nafpliotis, DE Goldberg. A niched pareto genetic algorithm for multi-objective optimization. Fogarty TC. Proc. of the 1st IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 1994, 82−87.
DOI: 10.1109/icec.1994.350037
Google Scholar
[5]
M. Erickson, A. Mayer, J. Horn. The Niched Pareto Genetic Algorithm -2 applied to the design of groundwater remediation systems. Evolutionary Multi-Criterion Optimization. LNCS, 1993 (2001) 681−695.
DOI: 10.1007/3-540-44719-9_48
Google Scholar
[6]
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. On Evolutionary Computation, 6 (2002)182−197.
DOI: 10.1109/4235.996017
Google Scholar
[7]
Liu Liqin, Zhang Xueliang, Xie Liming, etc. Multi-objective particle swarm optimization algorithm based on dynamic crowding distance and it application. Agricultural Machinery. 41 (2010)189-194. ) (in china).
DOI: 10.1109/icicisys.2009.5357798
Google Scholar
[8]
Yaonan Wang, Lianghong Wu, Xiaofang Yuan. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput. 14(2010)193–209.
DOI: 10.1007/s00500-008-0394-9
Google Scholar
[9]
CA Coello, GT Pulido, MS Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(2004)256–279.
DOI: 10.1109/tevc.2004.826067
Google Scholar
[10]
Weiyi Qian, Ajun li. Adaptive differential evolution algorithm for multi-objective optimization problems. Applied Mathematics and Computation, 201(2008)431-440.
DOI: 10.1016/j.amc.2007.12.052
Google Scholar
[11]
I. Kennedy and R. Eberhart. Particle swarm optimization. In: IEEE Intentional Conference on Neural Networks. 1995, 1942-(1948).
Google Scholar
[12]
K.T. Praveen, B. Sanghamitra, K.P. Sankar. Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information Sciences, 177 (2007)5033–5049.
DOI: 10.1016/j.ins.2007.06.018
Google Scholar
[13]
N.K. Madavan. Multio-bjective optimization using a Pareto differential evolution approach. Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 2(2002)1145-1150.
DOI: 10.1109/cec.2002.1004404
Google Scholar
[14]
F. Xue, A.C. Sanderson, R.J. Graves. Pareto-based multi-objective differential evolution, Proceedings of the 2003 Congress on Evolutionary Computation. IEEE Press, Canberra, Australia, 2(2003)862–869.
DOI: 10.1109/cec.2003.1299757
Google Scholar