[1]
S. Petroni, C. La Tegola, G. Caretto, A. Campa, A. Passaseo, M. De Vittorio, R. Cingolani, Aluminum Nitride piezo-MEMS on polyimide flexible substrates, Microelectron. Eng. 88 (2011) 2372-2375.
DOI: 10.1016/j.mee.2011.02.080
Google Scholar
[2]
J. Martinez-Quijada, S. Caverhill-Godkewitsch, M. Reynolds, L. Gutierrez-Rivera, R.W. Johnstone, D.G. Elliott, D. Sameoto, C.J. Backhouse, Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems, Sens. Actuators, A 193 (2013).
DOI: 10.1016/j.sna.2013.01.035
Google Scholar
[3]
X.J. He, Z.Q. Lv, B. Liu, Z.H. Li, High-isolation lateral RF MEMS capacitive switch based on HfO2 dielectric for high frequency applications, Sens. Actuators, A 188 (2012) 342-348.
DOI: 10.1016/j.sna.2012.03.013
Google Scholar
[4]
Z. Wang, J. Liu, T. Ren, L. Liu, Fabrication of organic PVP doping-based Ba0. 5Sr0. 5TiO3 thick films on silicon substrates for MEMS applications, Sens. Actuators, A 117 (2005) 293-300.
DOI: 10.1016/j.sna.2004.06.012
Google Scholar
[5]
Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness, Mater. Sci. Eng., A 427 (2006).
DOI: 10.1016/j.msea.2006.04.080
Google Scholar
[6]
I.C. Estrada-Raygoza, M. Sotelo-Lerma, R. Ramirez-Bon, Structural and morphological characterization of chemically deposited silver films, J. Phys. Chem. Solids 67 (2006) 782-788.
DOI: 10.1016/j.jpcs.2005.10.183
Google Scholar
[7]
G.M. Wilson, J.F. Smith, J.L. Sullivan, A nanotribological study of thin amorphous C and Cr doped amorphous C coatings, Wear 265 (2008) 1633-1641.
DOI: 10.1016/j.wear.2008.03.017
Google Scholar
[8]
V. Mulloni, R. Bartali, S. Colpo, F. Giacomozzi, N. Laidani, B. Margesin, Electrical and mechanical properties of layered gold–chromium thin films for ohmic contacts in RF-MEMS switches, Materials Science and Engineering B 163 (2009) 199–203.
DOI: 10.1016/j.mseb.2009.06.004
Google Scholar
[9]
O. Okman, J.W. Kysar, Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying, Journal of Alloys and Compounds 509 (2011) 6374–6381.
DOI: 10.1016/j.jallcom.2011.02.115
Google Scholar
[10]
M. Kim W.J. Ha, J.W. Anh, H.S. Kim, S.W. Park, D. Lee, Fabrication of nanoporous gold thin films on silicon substrate by multilayer deposition of Au and Ag, Journal of Alloys and Compounds 484 (2009) 28–32.
DOI: 10.1016/j.jallcom.2009.05.067
Google Scholar
[11]
J.F. Pierson, D. Wiederkehr, A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films 478 (2005) 196-205.
DOI: 10.1016/j.tsf.2004.10.043
Google Scholar
[12]
F. Aviles, O. Ceh, A.I. Oliva, Physical properties of Au and Al thin films measured by resistive heating, Surface Review and Letters 12 (2005) 101-106.
DOI: 10.1142/s0218625x05006834
Google Scholar
[13]
A. Proszynski, D. Chocyk, G. Gladyszewski, Stress modification in gold metal thin films during thermal annealing, Optica Applicata XXXIX (2009) 705-710.
Google Scholar
[14]
B. Moazzez, S.M. O'Brien, E.F. Merschrod S., Improved adhesion of gold thin films evaporated on polymer resin: Applications for sensing surfaces and MEMS, Sensors 13(2013) 7021-7032.
DOI: 10.3390/s130607021
Google Scholar
[15]
V. Merie, M. Pustan, C. Birleanu, Nanocharacterization of some Fe-based friction composites, ACTA Technica Napocensis. Series: Applied Mathematics and Mechanics 56 (2013) 709-714.
Google Scholar