Voids and Microstructure Evolution in Aluminium Sheets during High Deformation

Article Preview

Abstract:

The aim of the study is to identify the microstructure and voids evolution during the aluminium AA6016-T4 sheet deformation up to 93 % in order to perform deformation simulation for future applications. The deformed samples were cut in the rolling direction and to an angle of 45 and respectively 90 degrees to the rolling direction. The low deformed sample exhibit elliptic voids that are flattening out and for high deformed samples a new generation of rounded voids are generated. The microstructure evolution during cold work was studied by scanning electron microscopy and the distortion of the grain is discussed. The grain size evolution and the shape of grains related to the forming degree is analyzed.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] **: http: /www. alueurope. eu/wp-content/uploads/2012/01/AAM-Products-1-Rolled-products. pdf, Accessed: 2014-09-08.

Google Scholar

[2] C. Leppin, D. Daniel, R. Shahani, H. Gese, H. Dell, Formability Prediction Of Aluminum Sheet In Automotive Applications, AIP Conference Proceedings, 908 (2007) 117-122.

DOI: 10.1063/1.2740798

Google Scholar

[3] R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. J. Uggowitzer, S. Pogatscher Property criteria for automotive Al-Mg-Si sheet alloys, Mater. 7 (2014) 5047-5068.

DOI: 10.3390/ma7075047

Google Scholar

[4] J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater. 61 (2013) 818–843.

DOI: 10.1016/j.actamat.2012.10.044

Google Scholar

[5] A. Ofenheimer, B. Buchmayr, R. Kolleck, M. Merklein, Forming limits in sheet metal forming for non-proportional loading conditions – experimental and theoretical approach, Numisheet 2005, Volume A, edited by L. M. Smith, F. Pourboghrat, J. W. Yoon, T. B. Stoughton, American Institute of Physics (2005).

DOI: 10.1063/1.2011263

Google Scholar

[6] A. Lamik, H. Leitner, W. Eichlseder, F. A. Riemelmoser, Study of the fatigue behaviour of an aluminium-clad steel material compound, Strain 44 (2008) 440–445.

DOI: 10.1111/j.1475-1305.2007.00390.x

Google Scholar

[7] M. C. Butuc, J.J. Gracio, A. Barata da Rocha, An experimental and theoretical analysis on the application of stress-based forming limit criterion, Int. J Mech. Sci. 48 (2006) 414–429.

DOI: 10.1016/j.ijmecsci.2005.11.007

Google Scholar

[8] N. Tardif, S. Kyriakides, Determination of anisotropy and material hardening for aluminum sheet metal, Int. J Solids Struct. 49 (2012) 3496–3506.

DOI: 10.1016/j.ijsolstr.2012.01.011

Google Scholar

[9] A. Güner, C. Soyarslan, A. Brosius, A. E. Tekkaya, Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld2000-2D yield function, Int. J Solids Struct. 49 (2012) 3517–3527.

DOI: 10.1016/j.ijsolstr.2012.05.001

Google Scholar

[10] O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications-a review, Mater. Sci. Eng. A 336 (2002) 249–262.

DOI: 10.1016/s0921-5093(01)01968-2

Google Scholar

[11] P. Castany, F. Diologent, A. Rossoll, J. F. Despois, C. Bezençon, A. Mortensen, Influence of quench rate and microstructure on bendability of AA6016 aluminium alloys, Mater. Sci. Eng. A 559 (2013) 558-565.

DOI: 10.1016/j.msea.2012.08.141

Google Scholar

[12] S. Kurukuri, A. H. van den Boogaard, M. Ghosh, A. Miroux, Thermo-mechanical forming of Al–Mg–Si alloys: modeling and experiments, Proceedings of the 10th International Conferecne NUMIFORM 2010, edited by F. Barlat, Y. H. Moon, M.G. Lee, American Institute of Physics, (2010).

DOI: 10.1063/1.3457638

Google Scholar

[13] S. Thuillier, E. Maire, M. T. Brunet, Ductile damage in aluminium alloy thin sheets: Correlation between micro-tomography observations and mechanical modeling, Mater. Sci. Eng. A 558 (2012) 217–225.

DOI: 10.1016/j.msea.2012.07.116

Google Scholar

[14] F. Popa, I. Chicinaș{TTP}537 , D. Frunză, I. Nicodim, D. Banabic, Influence of high deformation on the microstructure of low-carbon steel, Int. Min. Metall. Mater. 21 (2014) 273-278.

DOI: 10.1007/s12613-014-0905-x

Google Scholar

[15] O. Engler, Y. An, Correlation of texture and plastic anisotropy in the Al-Mg alloy AA 5005, Solid State Phenom. 105 (2005) 277 – 284.

DOI: 10.4028/www.scientific.net/ssp.105.277

Google Scholar

[16] T. Clausmeyer, T. van den Boogaard, M. Noman, G. Gershteyn, M. Schaper, B. Svendsen, S. Bargmann, Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale, Int. J Mater. Form 4 (2011).

DOI: 10.1007/s12289-010-1017-4

Google Scholar