Position Control of Ultrasonic Motor Using IMC-PID Combined with Tribes Type NN Algorithm

Article Preview

Abstract:

In this paper, we propose a novel scheme of IMC-PID control combined with a tribes type neural network (NN) for the position control of ultrasonic motor (USM). In this method, the NN controller is employed for tuning the parameter in IMC-PID control. The weights of NN are designed to be updated by the tribes-particle swarm optimization (PSO) algorithm. This method makes it possible to compensate for the characteristic changes and nonlinearity of USM. The parameter-free tribes-PSO requires no information about the USM beforehand; hence its application overcomes the problem of Jacobian estimation in the conventional back propagation (BP) method of NN. The effectiveness of the proposed method is confirmed by experiments.

You have full access to the following eBook

Info:

[1] T. Kenjyo and T. Sashida, An Introduction of Ultrasonic Motor, Oxford Science Publications, (1993).

Google Scholar

[2] T. Maeno, Ultrasonic Motor, JRSJ, Vol. 21, No. 1, (2003) pp.10-14.

Google Scholar

[3] J.G. Ziegler and N. B. Nichols, Optimum Settings for Automatic Controllers, Trans. ASME, Vol. 64, (1942) pp.759-768.

DOI: 10.1115/1.4019269

Google Scholar

[4] C. E. Garcia and M. Morari, Internal Model Control-1, A Unifying Review and Some New Results, Ind. Eng. Process Des. & Dev. 21, (1982) pp.318-323.

DOI: 10.1021/i200017a016

Google Scholar

[5] T. Senjyu, H. Miyazato and K. Uezato, Position Control of Ultrasonic Motors Using Neural Network, IEEJ Transactions on Electronics, Vol. 116-D, No. 10, (1996) pp.1059-1066.

DOI: 10.1541/ieejias.116.1059

Google Scholar

[6] K. Tanaka, M. Oka, A. Uchibori, Y. Iwata and H. Morioka, Precise Position Control of Ultrasonic Motor Using PID Controller Combined with NN, IEEJ Journal, Series C, Vol. 122, No. 8, (2002) pp.1317-1324.

DOI: 10.1541/ieejeiss1987.122.8_1317

Google Scholar

[7] K. Tanaka, T. Takeguchi, J. Nakamoto, and Jinhua Li, IMC-PID Control Using NN for Ultrasonic Motor, IEEJ Trans. EIS, Vol. 123, No. 11, (2003) p.1982-(1988).

DOI: 10.1541/ieejeiss.123.1982

Google Scholar

[8] K. Tanaka, Y. Yoshimura, Y. Wakasa, T. Akashi, M. Oka, and S. Mu, Variable Gain Type Intelligent PID control for Ultrasonic Motor, Journal of AEM, Vol. 17, No. 3, (2009) pp.107-113.

Google Scholar

[9] K. Tanaka, M. Oka, Y. Wakasa, T. Akashi, and A. Naganawa, GA Adjustment Type NN-PID Control for Ultrasonic Motor, Journal of AEM, Vol. 15, No. 4, (2007) pp.55-61.

Google Scholar

[10] K. Tanaka, T. Murata, Y, Nishimura, Rahman Faridah Abd, M. Oka, and A. Uchibori, Variable Gain Type PID Control using PSO for Ultrasonic Motor, Journal of AEM, Vol. 18, No. 3, (2010) pp.294-299.

Google Scholar

[11] J. Kennedy and R. Eberhart, Particle Swarm Optimization, Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, (1995) p.1942-(1948).

Google Scholar

[12] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, (2001).

Google Scholar

[13] M. Clerc and J. Kennedy, The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space, IEEE Trans. Evolutionary Computation, Vol. 6, No. 1, (2002) pp.58-73.

DOI: 10.1109/4235.985692

Google Scholar

[14] Y. Cooren, M. Clerc, and P. Siarry, Performance Evaluation of TRIBES, an Adaptive Particle Swarm Optimization Algorithm, Swarm Intelligence, Vol. 3, No. 2, (2009) pp.149-178.

DOI: 10.1007/s11721-009-0026-8

Google Scholar

[15] Maurice Clerc, TRIBES, a Parameter Free Particle Swarm Optimizer, OEP'03, Paris, France.

Google Scholar

[16] Yann Cooren, Amir Nakib, and Patrick Siarry, Image Thresholding Using TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm, LION 2007 II, LNCS 5313, (2008) p.81–94.

DOI: 10.1007/978-3-540-92695-5_7

Google Scholar