[1]
K. Schlacher, Mathematical modeling for nonlinear control: a Hamiltonian approach, Mathematics and Computers in Simulation 79 (2008) 829-849.
DOI: 10.1016/j.matcom.2008.02.011
Google Scholar
[2]
Han-Xiong Li, Chenkun Qi, Modeling of distributed parameter systems for applications—A synthesized review from time-space separation, Journal of Process Control 20 (2010) 891-901.
DOI: 10.1016/j.jprocont.2010.06.016
Google Scholar
[3]
H.J.C. Huijberts, C.H. Moog, R. Pothin, Input−output decoupling of nonlinear systems by static measurement feedback, Systems & Control Letters 39 (2000) 109-114.
DOI: 10.1016/s0167-6911(99)00095-x
Google Scholar
[4]
T. S. Dillon, Dynamical modelling and control of large-scale systems, International Journal of Electrical Power & Energy Systems 4 (1982) 29-36.
DOI: 10.1016/0142-0615(82)90014-x
Google Scholar
[5]
L. Pourkarimi, M.A. Yaghoobi, M. Mashinchi, Efficient curve fitting: An application of multiobjective programming, Applied Mathematical Modelling 35 (2011) 346-365.
DOI: 10.1016/j.apm.2010.06.009
Google Scholar
[6]
J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, second ed, Springer-Verlag, Berlin, (1972).
Google Scholar
[7]
E. Sli, D.F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, (2003).
Google Scholar
[8]
Hiroyuki Kano, Magnus Egerstedt, Hiroaki Nakata, Clyde F. Martin, B-splines and control theory, Applied Mathematics and Computation 145 (2003) 263–288.
DOI: 10.1016/s0096-3003(02)00486-1
Google Scholar
[9]
Franklin G. F., Emami-Naeini A., and Powell J. D., Feedback Control of Dynamic Systems, third ed, Addison-Wesley Longman Publishing Co., (1993).
Google Scholar
[10]
Joel L. Schiff, The Laplace transform: theory and applications, Springer-Verlag, New York, (1999).
Google Scholar
[11]
S. B. Karmakar, Approximate analysis of non-linear systems by Laplace transform, Journal of Sound and Vibration 69 (1980) 597-602.
DOI: 10.1016/0022-460x(80)90628-8
Google Scholar