Mathematical Modeling of Control Systems Based on Output Feedback Decoupling, Curve Fitting and Spline Interpolation

Article Preview

Abstract:

In this paper, based on the output feedback decoupling, curve fitting and spline interpolation method, a mathematical model is presented for nonlinear dynamical system wherein only system inputs and outputs are known.

You have full access to the following eBook

Info:

[1] K. Schlacher, Mathematical modeling for nonlinear control: a Hamiltonian approach, Mathematics and Computers in Simulation 79 (2008) 829-849.

DOI: 10.1016/j.matcom.2008.02.011

Google Scholar

[2] Han-Xiong Li, Chenkun Qi, Modeling of distributed parameter systems for applications—A synthesized review from time-space separation, Journal of Process Control 20 (2010) 891-901.

DOI: 10.1016/j.jprocont.2010.06.016

Google Scholar

[3] H.J.C. Huijberts, C.H. Moog, R. Pothin, Input−output decoupling of nonlinear systems by static measurement feedback, Systems & Control Letters 39 (2000) 109-114.

DOI: 10.1016/s0167-6911(99)00095-x

Google Scholar

[4] T. S. Dillon, Dynamical modelling and control of large-scale systems, International Journal of Electrical Power & Energy Systems 4 (1982) 29-36.

DOI: 10.1016/0142-0615(82)90014-x

Google Scholar

[5] L. Pourkarimi, M.A. Yaghoobi, M. Mashinchi, Efficient curve fitting: An application of multiobjective programming, Applied Mathematical Modelling 35 (2011) 346-365.

DOI: 10.1016/j.apm.2010.06.009

Google Scholar

[6] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, second ed, Springer-Verlag, Berlin, (1972).

Google Scholar

[7] E. Sli, D.F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, (2003).

Google Scholar

[8] Hiroyuki Kano, Magnus Egerstedt, Hiroaki Nakata, Clyde F. Martin, B-splines and control theory, Applied Mathematics and Computation 145 (2003) 263–288.

DOI: 10.1016/s0096-3003(02)00486-1

Google Scholar

[9] Franklin G. F., Emami-Naeini A., and Powell J. D., Feedback Control of Dynamic Systems, third ed, Addison-Wesley Longman Publishing Co., (1993).

Google Scholar

[10] Joel L. Schiff, The Laplace transform: theory and applications, Springer-Verlag, New York, (1999).

Google Scholar

[11] S. B. Karmakar, Approximate analysis of non-linear systems by Laplace transform, Journal of Sound and Vibration 69 (1980) 597-602.

DOI: 10.1016/0022-460x(80)90628-8

Google Scholar