Fracturing in HDR Geothermal System

Article Preview

Abstract:

Geothermal systems have a big draw as a provider for free thermal energy for electrical generation. The resource based on fracture networks that permit fluid circulation, and allow geothermal heat to be extracted. Most geothermal resources occur in rocks that posses lack fracture permeability and fluid circulation. Hence, the fluid will be heated due to the Hot Dry Rock (HDR). The flow is circulated through the cracks, and extracts the heat to the ground. The emphasis of the simulators is on the HDR and on the development of methods that produce the hydraulic fractures. Linear elastic fracture mechanics approach (LEFM) was used to predict the crack propagation for initial crack. Finite element method (FEM) is used to predict the maximum stress areas, hence, determining the crack initiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-60

Citation:

Online since:

January 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Al-Mukhtar and B. Merkel, Simulation of the crack propagation in rocks using fracture mechanics approach, J. Fail. Anal. Prev., vol. 15, no. 1, p.90–100, (2015).

DOI: 10.1007/s11668-014-9907-2

Google Scholar

[2] A. R. Ingraffea and F. E. Heuze, Finite element models for rock fracture mechanics, Int. J. Numer. Anal. Methods Geomech., vol. 4, no. 1, p.25–43, (1980).

DOI: 10.1002/nag.1610040103

Google Scholar

[3] M. P. Hardy, Fracture mechanics applied to rock, (1973).

Google Scholar

[4] R. S. Carbonell, Fracture mechanics analysis of the breakdown process. (1994).

Google Scholar

[5] L. Vandamme, R. G. Jeffrey, and J. H. Curran, Pressure distribution in three-dimensional hydraulic fractures, SPE Prod. Eng., vol. 3, no. 2, p.181–186, (1988).

DOI: 10.2118/15265-pa

Google Scholar

[6] R. G. Jeffrey, X. Zhang, and M. J. Thiercelin, Hydraulic Fracture Offsetting in Naturally Fractures Reservoirs: Quantifying a Long-Recognized Process, in SPE Hydraulic Fracturing Technology Conference, (2009).

DOI: 10.2118/119351-ms

Google Scholar

[7] F. E. Heuze, R. J. Shaffer, A. R. Ingraffea, and R. H. Nilson, Propagation of fluid-driven fractures in jointed rock. Part 1—development and validation of methods of analysis, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 27, no. 4, p.243–254, (1990).

DOI: 10.1016/0148-9062(90)90527-9

Google Scholar

[8] N. Morita, D. L. Whitfill, and H. A. Wahl, Stress-intensity factor and fracture cross-sectional shape predictions from a three-dimensional model for hydraulically induced fractures, J. Pet. Technol., vol. 40, no. 10, p.1–329, (1988).

DOI: 10.2118/14262-pa

Google Scholar

[9] B. Haimson, Hydraulic fracturing in porous and nonporous rock and its potential for determining in-situ stresses at great depth, (1968).

Google Scholar

[10] B. Haimson and E. J. Stahl, Hydraulic fracturing and the extraction of minerals through wells, in Symp. Salt, (Proc. ); (United States), 1970, vol. 2, no. CONF-690456.

Google Scholar

[11] B. Haimson and C. Fairhurst, Hydraulic fracturing in porous-permeable materials, J. Pet. Technol., vol. 21, no. 7, p.811–817, (1969).

DOI: 10.2118/2354-pa

Google Scholar

[12] B. Haimson and C. Fairhurst, In-situ stress determination at great depth by means of hydraulic fracturing, in The 11th US Symposium on Rock Mechanics (USRMS), (1969).

Google Scholar

[13] B. Haimson and C. Fairhurst, Hydraulic fracturing and its potential for determining in situ stresses at great depths, Trans. Am. Geophys. Union; (United States), vol. 49, no. CONF-680488-, (1968).

Google Scholar

[14] T. Doe, Hydraulic fracturing and overcoring stress measurements in a deep borehole at the Stripa test mine, Sweden, Lawrence Berkeley Natl. Lab., (2010).

DOI: 10.1016/0148-9062(82)91128-7

Google Scholar

[15] C. Scavia, A method for the study of crack propagation in rock structures, Géotechnique, vol. 45, no. 3, p.447–463, (1995).

DOI: 10.1680/geot.1995.45.3.447

Google Scholar

[16] Z. T. Bieniawski, Mechanism of brittle fracture of rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 4, no. 4, p.395–406, (1967).

Google Scholar

[17] W. F. Brace, Brittle fracture of rocks. Massachusetts Institute of Technology, Industrial Liaison Program, (1963).

Google Scholar

[18] T. J. Boone, P. A. Wawrzynek, and A. R. Ingraffea, Simulation of the fracture process in rock with application to hydrofracturing, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 23, no. 3, p.255–265, (1986).

DOI: 10.1016/0148-9062(86)90971-x

Google Scholar

[19] J. F. Labuz, S. P. Shah, and C. H. Dowding, Experimental analysis of crack propagation in granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 22, no. 2, p.85–98, (1985).

DOI: 10.1016/0148-9062(85)92330-7

Google Scholar

[20] A. M. Rubin, Tensile fracture of rock at high confining pressure: implications for dike propagation, J. Geophys. Res. Solid Earth, vol. 98, no. B9, p.15919–15935, (1993).

DOI: 10.1029/93jb01391

Google Scholar

[21] J. Petit and M. Barquins, Can natural faults propagate under mode II conditions?, Tectonics, vol. 7, no. 6, p.1243–1256, (1988).

DOI: 10.1029/tc007i006p01243

Google Scholar

[22] A. M. Al-Mukhtar, Performance of the Subsurface Hydraulics in a Doublet System Using the ThermoGIS Calculator, J. Geogr. Geol., vol. 6, no. 3, p.90, (2014).

DOI: 10.5539/jgg.v6n3p90

Google Scholar