In Situ Performance Assessment of a Bio-Sourced Insulation Material from an Inverse Analysis of Measurements on a Demonstrator Building

Article Preview

Abstract:

The purpose of this study is to evaluate the potential of bio-sourced material based on cereal straw for an efficient insulation. Decreasing significantly energy consumption of buildings requires not only the very best insulation material for heat loss reduction through the wall but also the reduction of air permeability which can affect automatically the comfort in the building. This is why, propose an insulation material with low thermal conductivity remains insufficient and the evaluation of the performance of the new insulation material in situ in real conditions is an essential step. The experimental building ( PROMETHE demonstrator) is set up with wood frame and multilayered walls composed with cinder blocks and insulation bio-composite based on cereal straw in order to simulate the thermal rehabilitation conditions according the External thermal insulation principle. Each façade is divided in four part with three different insulation bio-composites and naked part for comparison reasons. Hygrothermal sensors are used both inside and outside of the demonstrator, and heat-flux sensor is placed at the cinder blocks biocomposite interface. These in situ measurements are used to compare the efficiency of three bi-sourced materials and for the modeling the hygrothermal behavior of the multilayer wall by using the set of identified parameters in laboratory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-467

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nishino, K. Hirao, M. Kotera, K. Nakamae, et H. Inagaki, « Kenaf reinforced biodegradable composite », Compos. Sci. Technol., vol. 63, no 9, p.1281‑1286, juill. (2003).

DOI: 10.1016/s0266-3538(03)00099-x

Google Scholar

[2] S. Sampaio, D. Bishop, et J. Shen, « Physical and chemical properties of flax fibres from stand-retted crops desiccated at different stages of maturity », Ind. Crops Prod., vol. 21, no 3, p.275‑284, mai (2005).

DOI: 10.1016/j.indcrop.2004.04.001

Google Scholar

[3] Y. Millogo, J. -C. Morel, J. -E. Aubert, et K. Ghavami, « Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers », Constr. Build. Mater., vol. 52, p.71‑78, févr. (2014).

DOI: 10.1016/j.conbuildmat.2013.10.094

Google Scholar

[4] G. H. D. Tonoli, S. F. Santos, H. Savastano, S. Delvasto, R. Mejía de Gutiérrez, et M. del M. Lopez de Murphy, « Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre », Cem. Concr. Compos., vol. 33, no 2, p.225‑232, févr. (2011).

DOI: 10.1016/j.cemconcomp.2010.10.013

Google Scholar

[5] M. Ramli, W. H. Kwan, et N. F. Abas, « Strength and durability of coconut-fiber-reinforced concrete in aggressive environments », Constr. Build. Mater., vol. 38, p.554‑566, janv. (2013).

DOI: 10.1016/j.conbuildmat.2012.09.002

Google Scholar

[6] M. Ali et N. Chouw, « Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete », Constr. Build. Mater., vol. 41, p.681‑690, avr. (2013).

DOI: 10.1016/j.conbuildmat.2012.12.052

Google Scholar

[7] T. Ashour, H. Wieland, H. Georg, F. -J. Bockisch, et W. Wu, « The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings », Mater. Des., vol. 31, no 10, p.4676‑4685, déc. (2010).

DOI: 10.1016/j.matdes.2010.05.026

Google Scholar

[8] H. -R. Kymäläinen et A. -M. Sjöberg, « Flax and hemp fibres as raw materials for thermal insulations », Build. Environ., vol. 43, no 7, p.1261‑1269, juill. (2008).

DOI: 10.1016/j.buildenv.2007.03.006

Google Scholar

[9] A. GRELAT, « Utilisation de la paille en parois de maisons individuelles à ossature bois », Extr. Rapp. Final, vol. 2, (2004).

Google Scholar

[10] M. Bouasker, N. Belayachi, D. Hoxha, et M. Al-Mukhtar, « Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications », Materials, vol. 7, no 4, p.3034‑3048, avr. (2014).

DOI: 10.3390/ma7043034

Google Scholar

[11] N. Belayachi, M. Bouasker, D. Hoxha, et M. Al-Mukhtar, « Thermo-Mechanical Behaviour of an Innovant Straw Lime Composite for Thermal Insulation Applications », Appl. Mech. Mater., vol. 390, p.542‑546, (2013).

DOI: 10.4028/www.scientific.net/amm.390.542

Google Scholar

[12] N. Belayachi, D. Hoxha, et M. Slaimia, « Durability studies on lightweight plaster and straw fiber based material for building thermal insulation », ICBBM 2015, p.203‑207, (2015).

DOI: 10.1016/j.conbuildmat.2016.08.120

Google Scholar

[13] H. M. Künzel, Simultaneous heat and moisture transport in building components: one- and two-dimensional calculation using simple parameters. Stuttgart: IRB Verlag, (1995).

Google Scholar

[14] J. M. P. Q. Delgado, N. M. M. Ramos, E. Barreira, et V. P. de Freitas, « A CRITICAL REVIEW OF HYGROTHERMAL MODELS USED IN POROUS BUILDING MATERIALS », J. Porous Media, vol. 13, no 3, p.221‑234, (2010).

DOI: 10.1615/jpormedia.v13.i3.30

Google Scholar

[15] T. Kalamees et J. Vinha, « Hygrothermal calculations and laboratory tests on timber-framed wall structures », Build. Environ., vol. 38, no 5, p.689‑697, mai (2003).

DOI: 10.1016/s0360-1323(02)00207-x

Google Scholar

[16] H. Rafidiarison, R. Rémond, A. Nicolas, et E. Mougel, « Etudes expérimentale et numérique du comportement hygrothermique des matériaux hygroscopiques », (2013).

Google Scholar

[17] H. M. KÜNZEL et K. KIESSL, « Calculation of heat and moisture transfer in exposed building components », Int. J. Heat Mass Transf., vol. 40, no 1, p.159‑167, oct. (1996).

DOI: 10.1016/s0017-9310(96)00084-1

Google Scholar

[18] H. M. Künzel, A. Holm, D. Zirkelbach, et A. N. Karagiozis, « Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope », Sol. Energy, vol. 78, no 4, p.554‑561, avr. (2005).

DOI: 10.1016/j.solener.2004.03.002

Google Scholar

[19] H. Künzel, T. Schmidt, et A. Holm, « Exterior surface temperature of different wall constructions comparison of numerical simulation and experiment », in Proceedings of the 11th Symposium for Building Physics, Dresden, Germany, 2002, vol. 1, p.441.

Google Scholar

[20] M. Künzel, « Factors determining surface moisture on external walls », in Proceedings of the XI International Conference Thermal Performance of the Exterior Envelopes of Whole Buildings, 2010, p.1–6.

Google Scholar

[21] B. Stöckl et D. Zirkelbach, « Hygrothermal simulation of green roofs–new models and practical application », in Nordic Symp. Building Physics, Lund, 2014, p.15–19.

Google Scholar

[22] F. Antretter, F. Sauer, T. Schöpfer, et A. Holm, « Validation of a hygrothermal whole building simulation software », in Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 2011, vol. 14, p.16.

Google Scholar

[23] O. Hägerstedt et J. Arfvidsson, « Comparison of field measurements and calculations of relative humidity and temperature in wood framed walls », in Thermophysics 2010, 2010, p.93–101.

Google Scholar