Numerical Simulation of Heat Exchanges for a Desert House Type ADRAR

Article Preview

Abstract:

The main objective of this work is to study the thermal exchanges in a habitable enclosure located in a desert region of Algeria (Adrar). This latter is considered as an air volume of parallelepiped shape limited by horizontal and vertical flat walls. The walls are the only capacitive elements of the enclosure. They are thermally coupled by convection and radiation and are the seat of conductive flux. The external facades of the enclosure are the seat of a convective flux with the external air and radiative exchanges with the environment (ground and sky). Openings (cracks, sealing defects, infiltration orifices, renewal orifices, etc.) allow the air to circulate inside the habitable enclosure and between the inside and the outside. Thermal exchanges are studied using the balance equations established at each wall of the enclosure. These equations have been discretized by an implicit finite difference method. The systems of algebraic equations thus obtained have been solved by the Gauss algorithm using the nodal method. The effects of the outdoor ambient temperature, the density of the incident solar flux on the facades and the orientation of the habitable enclosure in the meridian plane on the temperature distributions of the internal walls and the filled air in the enclosure havec been analyzed on the basis of recent climate data measured at the ADRAR Saharan Renewable Energy Research Unit. An analysis of the evolution of the internal ambient temperature as a function of the wind exposure factor of the heated space and of the degree of leaktightness of the doors and windows was also carried out at the end of this work. An acceptable agreement was found between the numerical results and those measured by the radiometric station. Moreover, the results obtained show that the building material used in this region causes undesirable overheating due to its thermal inertia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-75

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Traore, Transferts de chaleur et de masse dans les parois des bâtiments à ossature bois, Thèse de doctorat de l'Université Henri Poincaré – Nancy Université en Mécanique et Energétique, (2011).

DOI: 10.4000/trajectoires.981

Google Scholar

[2] G. Lefebvre, Comportement thermique dynamique des bâtiments : simulation et analyse, Techniques de l'Ingénieur, traité Génie énergétique, B 2 041-1.

DOI: 10.51257/a-v1-b2041

Google Scholar

[3] S. Jiang, C. Grey, Wouter Poortinga and Chris Tweed, Winter Indoor Air Temperature and Relative Humidity in Hard-To-Heat, Hard-To-Treat Houses in Wales: Results from a Household Monitoring Study, WSA Working Paper Series, (2015).

Google Scholar

[4] S. Ferrari, V. Zanotto, The thermal performance of walls under actual service conditions: Evaluating the results of climatic chamber test, Construction and Building Materials, vol. 43, (2013), pp.309-316.

DOI: 10.1016/j.conbuildmat.2013.02.056

Google Scholar

[5] E. Wurtz, Modélisation tridimensionnelle des transferts thermiques et aérauliques dans le bâtiment en environnement orienté objet, Thèse de doctorat Ecole Nationale des Ponts et Chaussees, (2010).

Google Scholar

[6] ADEME, Amélioration énergétique des bâtiments existants. ADEME Editions et Fédération Française du Bâtiment.

Google Scholar

[7] J. Berger, Contribution à la modélisation hygrothermique des bâtiments : Application des méthodes de réduction de modèle, Thèse de docteur de l'université de Grenoble, Spécialité : Génie Civil et Sciences de l'Habitat, (2014).

DOI: 10.1080/17747120.2006.9692882

Google Scholar

[8] M. Madaci, D. Kerdoun, Case Study of a Solar Pumped Storage Prototype Station Implementation Designed for the Region of Ghardia, International journal of renewable energy research, vol. 6 (2), (2016), 435-446.

DOI: 10.20508/ijrer.v6i2.3436.g6803

Google Scholar

[9] H. Othieno, J. Awange, Energy resources in Africa: Distribution, Opportunities and Challenge, Springer International Publishing, Switzirland, 2016, pp.193-221.

Google Scholar

[10] S. Bentouba, L'énergie renouvelable en Algérie et l'impact sur l'environnement, Journal of Scientific Research, Université de Bechar, vol. 1, (2010), pp.50-54.

Google Scholar

[11] K.A., Antonopoulos E. Koronaki, Apparent and effective thermal capacitance of buildings, Energy, vol. 23 (3), (1998), pp.183-192.

DOI: 10.1016/s0360-5442(97)00088-1

Google Scholar

[12] F. Sebaa, Etude du potentiel éolien d'Adrar Sélection de sites pour la ferme éolienne de 10 MW, Revue des Energies Renouvelables, (2010), pp.295-300.

Google Scholar

[13] ENERMENA High Precision Meteorological Station of Research Unit for Renewable Energies in the Saharan Environment in ADRAR, Algeria, (2014).

Google Scholar

[14] O. Abdellatif, B. Aour, M. Benhamou, Analyse de l'effet de l'épaisseur de la dalle chauffante sur l'effecacité thermique d'une installation de plancher solaire direct (PSD) implantée à ADRAR, African Review of Science, Technology and Development, vol. 01(01), (2016).

DOI: 10.54246/1548-009-001-004

Google Scholar

[15] O. Abdellatif, B. Aour, M. Hamouda, M. Benhamou, Méthodologie pour la détermination de l'écartement optimal de la chaine tubulaire d'une dalle chauffante, Revue des Energies Renouvelables, vol. 19(01), (2016), pp.11-19.

Google Scholar

[16] S. Bekkouche, T. Benouaz and A. Cheknane, A modelling Approach of Thermal Insulation Applied to a Saharan Building, Thermal Science, No. 4, vol. 13, (2009), pp.233-244.

DOI: 10.2298/tsci0904233b

Google Scholar

[17] O. Abdellatif, B. Zeghmati, X. Chesneau, B. Aour B., Modélisation du bilan radiatif et énergetique d'un habitat situé dans la region d'ADRAR, Recueil de Mécanique, vol. 2, (2016), pp.79-87.

Google Scholar

[18] S.M.A. Bekkouche, T. Benouaz and A. Cheknane, A modelling Approach of Thermal Insulation Applied to a Saharan Building, Thermal Science, vol. 13 (4), (2009), pp.233-244.

DOI: 10.2298/tsci0904233b

Google Scholar

[19] M. Daguenet, Les Séchoirs Solaires, Théorie et Pratique, Editions Unesco, Paris, (1985), pp.81-106.

Google Scholar

[20] N. Boulfaf, J. Chaoufi, A. Ghafiri, A. Elorf, Thermal Study of Hybrid Photovoltaic Thermal (PV-T) Solar Air Collector Using Finite Element Method, International Journal of Renewable Energy Research, Vol. 6(1), (2016), pp.171-182.

DOI: 10.20508/ijrer.v6i1.3294.g6793

Google Scholar

[21] M. Boukli, Thermal requirements and temperatures evolution in an ecological house, Energy Procedia, vol. 6, (2011), pp.110-121.

Google Scholar

[22] K. Mansatiansin, Modélisation et simulation des transferts et de l'éclairement dans un habitat bioclimatique, Thèse de doctorat en sciences de l'ingénieur, spécialité mécanique énergétique, Université de Perpignan, (2005).

Google Scholar

[23] S. Robelison, Influence thermique de l'emplacement du toit en chaume sous le toit en tôle d'un habitat à Antananarivo-Madagascar, Afrique SCIENCE, vol. 04(3), (2008), pp.318-338.

DOI: 10.4314/afsci.v4i3.61693

Google Scholar