Experimental Investigation and Study the Effect of Hydro Fluoric Acid in Ultrasonic Machining of Polycarbonate Bullet Proof UL-752 and Acrylic Heat Resistant BS-476 Glass

Article Preview

Abstract:

The main objective of this experimental work is to study the effect of Hydro Fluoric acid in ultrasonic machining of polycarbonate bullet proof UL-752 and Acrylic Heat resistant BS 476 Glass. In which, mixture of abrasive particle are also used as the input machining parameter. Three types of abrasive; Alumina, Silicon Carbide and Boron Carbide are used for machining. Experiment has been performed with 8mm of high carbon high chromium tool steel (D2), high carbon steel (HCS) and high speed tool steel (HSS) tools. The material removal rate was father enhanced by HF acid. The experimentation date represent the main effect plots for tool wear rate and material removal rate. After analysis, results reveals that Al2O3+SiC+B2C mixed slurry (1:1:1), Hydro Fluoric acid with 1% concentration and High Speed tool Steel material produce the higher material removal affect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-39

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jain, N.K.; Jain, V.K. (2001).

Google Scholar

[2] Jain, V.K. (2013) Advanced Machining Processes; Allied publishers private limited: New Delhi, India.

Google Scholar

[3] Kumar, J. (2013), Ultrasonic machining- a comprehensive review, Machining Science and Technology, 17(3), 325-379. http: /dx. doi. org/10. 1080/10910344. 2013. 806093.

DOI: 10.1080/10910344.2013.806093

Google Scholar

[4] Azarhoushang, B.; Akbari, J. (2007), Ultrasonic assisted drilling of Inconel 738-LC, International Journal of Machine Tools and Manufacture 47, 1027-1033. http: /dx. doi. org/10. 1016/j. ijmachtools. 2006. 10. 007.

DOI: 10.1016/j.ijmachtools.2006.10.007

Google Scholar

[5] Dvivedi, A.; Kumar, P. (2007), Surface quality evaluation in ultrasonic drilling through the taguchi technique, International Journal of Advanced Manufacturing Technology, 34(1–2), 131-140. DOI: 10. 1007/s00170-006-0586-3.

DOI: 10.1007/s00170-006-0586-3

Google Scholar

[6] Gauri, S.K.; Chakravorty, R. (2011), Chakraborty, S. Optimization of correlated multiple responses of ultrasonic machining (USM) process, International Journal of Advanced Manufacturing Technology, 53, 1115-1127. DOI: 10. 1007/s00170-010-2905-y.

DOI: 10.1007/s00170-010-2905-y

Google Scholar

[7] Gilmore, R. (1991), Ultrasonic machining- a case study, Journal of Materials Processing Technology, 28(1–2), 139-148. http: /dx. doi. org/10. 1016/0924-0136(91)90213-X.

DOI: 10.1016/0924-0136(91)90213-x

Google Scholar

[8] Ghahramani, B.; Wang, Z.Y. (2001).

Google Scholar

[9] Rao, R.V.; Pawar, P.J.; Davim, J.P. (2010).

Google Scholar

[10] Sahay, C.; Ghosh, S.; Kammila, H.K. (2011), Analysis of ultrasonic machining using monte carlo simulation, Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver: USA, doi: 10. 1115/IMECE2011-63240.

DOI: 10.1115/imece2011-63240

Google Scholar

[11] Thoe, T.B.; Aspinwall, D.K. (1999), Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy, Journal of Materials Processing Technology, 92–93, 323-328. http: /dx. doi. org/10. 1016/S0924-0136(99)00117-X.

DOI: 10.1016/s0924-0136(99)00117-x

Google Scholar

[12] Wiercigroch, M.; Neilson, R.D.; Player, M.A. (1999), Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach, Physics Letters, 259, 91-96. http: /dx. doi. org/10. 1016/S0375-9601(99)00416-8.

DOI: 10.1016/s0375-9601(99)00416-8

Google Scholar

[13] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1998), Review on ultrasonic machining, International Journal of Machine Tools and Manufacture, 38(4), 239-255. http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.

DOI: 10.1016/s0890-6955(97)00036-9

Google Scholar

[14] Guzzo, P.L.; Raslan, A.A.; DeMello, J.D.B. (2003), Ultrasonic abrasion of quartz crystals, Wear, 255, 67-77. http: /dx. doi. org/10. 1016/S0043-1648(03)00094-2.

DOI: 10.1016/s0043-1648(03)00094-2

Google Scholar

[15] Komaraiah, M; Narasimha Reddy,P. N, (1993), A study on the influence of work-piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture, 33 (3), 495–505. http: /dx. doi. org/10. 1016/0890-6955(93)90055-Y.

DOI: 10.1016/0890-6955(93)90055-y

Google Scholar

[16] Haslehurst, M. (1981), Manufacturing Technology, 3rd edition, Viva Book, New Delhi, p.270–271.

Google Scholar

[17] Weilong, C; Zhijian. P, (2013), Process of Ultrasonic Machining, Handbook of manufacturing Engineering and Technology, London, (2013).

Google Scholar

[18] Choi, J.P.; Jeon, B.H.; Kim, B.H. (2007), Chemical-assisted ultrasonic machining of glass, Journal of Materials Processing Technology, 191, 153-156. http: /dx. doi. org/10. 1016/j. jmatprotec. 2007. 03. 017.

DOI: 10.1016/j.jmatprotec.2007.03.017

Google Scholar

[19] Morteza, A. S; Maohammad, N. R, (2014), Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM, Journal of Modern processes in manufacturing and production, 3 (2), 59-74.

Google Scholar

[20] Vinod, Y; Aniruddha, D. (2008), Design of horn for rotary ultrasonic machining using the finite element method, International journal of advanced manufacturing technology, 39 (1), 9-20 DOI: 10. 1007/s00170-007-1193-7.

DOI: 10.1007/s00170-007-1193-7

Google Scholar

[21] Guzzo, P.L.; Shinohara, A.H.; Raslan, A.A. (2004).

Google Scholar

[22] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1998), Review on ultrasonic machining, International journal of machine tools and manufacture, 38 (4), 239–255 http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.

DOI: 10.1016/s0890-6955(97)00036-9

Google Scholar

[23] T.J. Drozda, C. Wick, (1983) Non-traditional machining, Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, Volume. 1, Dearborn, MI, p.1–23, ISBN No. 0872633519.

DOI: 10.1080/10426918908956323

Google Scholar

[24] Seah, K.H.W.; Wong, Y.S.;. Lee, L.C. (1993), Design of tool holders for ultra-sonic machining using FEM, Journal of Material Processing Technology, 37 (1–4), 801–816. http: /dx. doi. org/10. 1016/0924-0136(93)90138-V.

DOI: 10.1016/0924-0136(93)90138-v

Google Scholar

[25] Komaraiah, M.; Manan, M.A.;. Reddy, P. N.; Victor, S. (1988), Investigation of surface roughness and accuracy in ultrasonic machining, Precision Engineering, 10 (2), 59–65. http: /dx. doi. org/10. 1016/0141-6359(88)90001-3.

DOI: 10.1016/0141-6359(88)90001-3

Google Scholar

[26] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1995), "The effect of operating parameters when ultrasonic contour machining, in: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12), Cork, Ireland, p.305–312.

Google Scholar

[27] Jain, V.K. Advanced Machining Process, Allied Publisher Pvt. Limited, India, 2002, p.28–56.

Google Scholar

[28] Pandey, P.C.; Shan, H.S. Modern Machining Processes, Tata McGraw-Hill, 1980, p.7–38 [Chapter 2].

Google Scholar

[29] Amin, S.G.; Ahmed, M.H.M.; Youssef, H.A. (1995).

Google Scholar

[30] Kremer, D. (1981), The state of the art of ultrasonic machining, Ann. CIRP, 30 (1), 107–110. http: /dx. doi. org/10. 1016/S0007-8506(07)60905-6.

DOI: 10.1016/s0007-8506(07)60905-6

Google Scholar

[31] Khairy, A.B.E. (1990), Assessment of some dynamic parameters for the ultra-sonic machining process, Wear, 137, 187–198 http: /dx. doi. org/10. 1016/0043-1648(90)90135-W.

DOI: 10.1016/0043-1648(90)90135-w

Google Scholar

[32] Singh, K.; Ahuja, I.P.S. (2014), Ultrasonic machining processes- review paper, International Journal for multi-disciplinary Engineering and Business Management, 2 (3) 57-66.

Google Scholar

[33] Singh, K.; Kumar, V. (2014).

Google Scholar

[34] Singh, K.; Kumar, V.S. (2014), Finite Element Analysis of Ultrasonic Machine Tool, International journal of engineering research and technology, 3 (7), 1647-1650.

Google Scholar

[35] Singh, K., Ahuja, I.P.S.; Kapoor. J. (2015).

Google Scholar

[36] Singh, K., Ahuja, I.P.S. and Kapoor. J. (2015).

Google Scholar

[37] Singh, K., Ahuja, I.P.S. and Kapoor. J. (2016).

Google Scholar

[38] Adithan, M. (1981), Tool wear characteristics in ultrasonic drilling, Tribology International, 14 (6), 351–356. http: /dx. doi. org/10. 1016/0301-679X(81)90103-1.

DOI: 10.1016/0301-679x(81)90103-1

Google Scholar

[39] Adithan, M. (1983), Abrasive wear in ultrasonic drilling, Tribology International, 16 (5), 253–255. http: /dx. doi. org/10. 1016/0301-679X(83)90083-X.

DOI: 10.1016/0301-679x(83)90083-x

Google Scholar

[40] Babitsky, V.I.; Astashev, V.K. (2007), "Ultrasonic processes and machine, Springer Berlin Heidelberg New York, ISBN 978-3-540-72060-7.

Google Scholar

[41] Jain, N.K.; Jain, V.K. (2001).

Google Scholar

[42] Jain, V.; Sharma, A.K.; Kumar, P. (2012), Investigations on tool wear in micro Ultrasonic machining, Applied Mechanics and Material, Tranc Tech Publication Switzerland, 110-116, pp.1561-1566. DOI: 10. 4028/www. scientific. net/AMM. 110-116. 1561.

DOI: 10.4028/www.scientific.net/amm.110-116.1561

Google Scholar

[43] I. Kaczmarek, Impact Grinding (Ultrasonic machining)—Book Chapter: 21 Principles of Machining by Cutting Abrasion and Erosion, Peter Peregrinus Ltd, Stevenage, 1976, p.448–462, ISBN 0901223662.

Google Scholar

[44] Dharmadhikari, S.W.; Sharma, C.S. (1985), Optimization of abrasive life in Ultrasonic Machining, Journal of Manufacturing Science and Engineering, 107 (4), 361-364. doi: 10. 1115/1. 3186010.

DOI: 10.1115/1.3186010

Google Scholar

[45] Bekrenev, N.V.; Muldasheve, G.K.; Petrovskii, A.P.; Tsvetkova, O.A. (2015).

Google Scholar

[46] Vinod Kumar, J.S. Khamba, (2009).

Google Scholar

[47] Chang, S.; Bone, G.M. (2005), Burr size reduction in drilling by ultrasonic assistance, Robotics and Computer-Integrated Manufacturing, 120, 442-450.

DOI: 10.1016/j.rcim.2004.11.005

Google Scholar

[48] Fan, W.H.; Chao, C.L.; Chou, W.C.; Chen, T. T; Chao, C.W. (2009).

Google Scholar

[49] Kumar, J.; Khamba, J.S. (2009).

Google Scholar

[50] Schorderet,A. ; Deghilage, E.; Agbeviade, K. (2013), Tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass, Procedia CIRP, 565-570. http: /dx. doi. org/10. 1016/j. procir. 2013. 03. 072.

DOI: 10.1016/j.procir.2013.03.072

Google Scholar

[51] Elliot, S.R.  Physics of Amorphous Materials. Longman group ltd, London, New York, 20 (9) (1984), ISBN 0-582-44636-8.

DOI: 10.1002/crat.2170200922

Google Scholar

[52] Scholze, H. Glass – Nature, Structure, and Properties. Springer, Verlag, New York, (1991) ISBN 978-1-4613-9069-5. DOI: 10. 1007/978-1-4612-9069-5.

Google Scholar

[53] Folmer , J. C. W., Franzen, S. (2003), Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory, Journal of Chemical Education, 80 (7), 813-818. DOI: 10. 1021/ed080p813.

DOI: 10.1021/ed080p813

Google Scholar

[54] Phillips D. C, Sambell R.A. J, Bowen D. H, (1972), The mechanical properties of carbon fiber reinforced pyrex glass, Journal of Material Science, 7 (12), 1454-1464. DOI: 10. 1007/BF00574937.

DOI: 10.1007/bf00574937

Google Scholar

[55] Vogel, W.; Kreidl, N.; Chemistry of Glass, Wiley, 1985. ISBN 978-0-916094-73-7.

Google Scholar

[56] Stookey, S.D.; Beall, G.H. Explorations in Glass: An Autobiography, Wiley, 2000, ISBN 978-1-57498-124-7.

Google Scholar

[57] Noel C. Stokes, The Glass and Glazing Handbook, Standards Association of Australia, (1998) ISBN 073372468X.

Google Scholar

[58] L.D. Rozenberg (Ed. ), Physical Principles of Ultrasonic Technology, volumes. 1 and 2, Plenum Press, New York, 1973, ISBN 978-1-4684-8217-1.

Google Scholar

[59] William. S.; Jayad. H. Foundation of material science and engineering, 4tg Ed. McGraw-Hill. Pp. 509. ISBN 0-07-295358-6.

Google Scholar

[60] Harper, C.A.; Petrie, E.M. Plastic materials and processes: A concise encyclopaedia, John Wiley and Sons, p.9, ISBN 978-0471-45920-0.

Google Scholar

[61] V.C. Venkatesh, (1983), Machining of glass by impact processes, Journal of Mechanical Working Technology, 8, 247–260 http: /dx. doi. org/10. 1016/0378-3804(83)90042-6.

DOI: 10.1016/0378-3804(83)90042-6

Google Scholar

[62] D.E. Clark, C.G. Pantano, Jr., L.L. Hench, Corrosion of Glass, Books for Industry, (1979).

Google Scholar

[63] A. Paul, Chemistry of Glasses, 2nd Edition, Chapman and Hall, London, New York, 1990, ISBN 0-412-27820-0.

Google Scholar

[64] Kuo, K.L. (2007), "Experimental investigation of brittle material milling using rotary ultrasonic machining. Proceedings of the 35th International MATADOR Conference, Springer: London, 195-198. DOI: 10. 1007/978-1-84628-988-0_43.

DOI: 10.1007/978-1-84628-988-0_43

Google Scholar