[1]
Jain, N.K.; Jain, V.K. (2001).
Google Scholar
[2]
Jain, V.K. (2013) Advanced Machining Processes; Allied publishers private limited: New Delhi, India.
Google Scholar
[3]
Kumar, J. (2013), Ultrasonic machining- a comprehensive review, Machining Science and Technology, 17(3), 325-379. http: /dx. doi. org/10. 1080/10910344. 2013. 806093.
DOI: 10.1080/10910344.2013.806093
Google Scholar
[4]
Azarhoushang, B.; Akbari, J. (2007), Ultrasonic assisted drilling of Inconel 738-LC, International Journal of Machine Tools and Manufacture 47, 1027-1033. http: /dx. doi. org/10. 1016/j. ijmachtools. 2006. 10. 007.
DOI: 10.1016/j.ijmachtools.2006.10.007
Google Scholar
[5]
Dvivedi, A.; Kumar, P. (2007), Surface quality evaluation in ultrasonic drilling through the taguchi technique, International Journal of Advanced Manufacturing Technology, 34(1–2), 131-140. DOI: 10. 1007/s00170-006-0586-3.
DOI: 10.1007/s00170-006-0586-3
Google Scholar
[6]
Gauri, S.K.; Chakravorty, R. (2011), Chakraborty, S. Optimization of correlated multiple responses of ultrasonic machining (USM) process, International Journal of Advanced Manufacturing Technology, 53, 1115-1127. DOI: 10. 1007/s00170-010-2905-y.
DOI: 10.1007/s00170-010-2905-y
Google Scholar
[7]
Gilmore, R. (1991), Ultrasonic machining- a case study, Journal of Materials Processing Technology, 28(1–2), 139-148. http: /dx. doi. org/10. 1016/0924-0136(91)90213-X.
DOI: 10.1016/0924-0136(91)90213-x
Google Scholar
[8]
Ghahramani, B.; Wang, Z.Y. (2001).
Google Scholar
[9]
Rao, R.V.; Pawar, P.J.; Davim, J.P. (2010).
Google Scholar
[10]
Sahay, C.; Ghosh, S.; Kammila, H.K. (2011), Analysis of ultrasonic machining using monte carlo simulation, Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver: USA, doi: 10. 1115/IMECE2011-63240.
DOI: 10.1115/imece2011-63240
Google Scholar
[11]
Thoe, T.B.; Aspinwall, D.K. (1999), Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy, Journal of Materials Processing Technology, 92–93, 323-328. http: /dx. doi. org/10. 1016/S0924-0136(99)00117-X.
DOI: 10.1016/s0924-0136(99)00117-x
Google Scholar
[12]
Wiercigroch, M.; Neilson, R.D.; Player, M.A. (1999), Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach, Physics Letters, 259, 91-96. http: /dx. doi. org/10. 1016/S0375-9601(99)00416-8.
DOI: 10.1016/s0375-9601(99)00416-8
Google Scholar
[13]
Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1998), Review on ultrasonic machining, International Journal of Machine Tools and Manufacture, 38(4), 239-255. http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.
DOI: 10.1016/s0890-6955(97)00036-9
Google Scholar
[14]
Guzzo, P.L.; Raslan, A.A.; DeMello, J.D.B. (2003), Ultrasonic abrasion of quartz crystals, Wear, 255, 67-77. http: /dx. doi. org/10. 1016/S0043-1648(03)00094-2.
DOI: 10.1016/s0043-1648(03)00094-2
Google Scholar
[15]
Komaraiah, M; Narasimha Reddy,P. N, (1993), A study on the influence of work-piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture, 33 (3), 495–505. http: /dx. doi. org/10. 1016/0890-6955(93)90055-Y.
DOI: 10.1016/0890-6955(93)90055-y
Google Scholar
[16]
Haslehurst, M. (1981), Manufacturing Technology, 3rd edition, Viva Book, New Delhi, p.270–271.
Google Scholar
[17]
Weilong, C; Zhijian. P, (2013), Process of Ultrasonic Machining, Handbook of manufacturing Engineering and Technology, London, (2013).
Google Scholar
[18]
Choi, J.P.; Jeon, B.H.; Kim, B.H. (2007), Chemical-assisted ultrasonic machining of glass, Journal of Materials Processing Technology, 191, 153-156. http: /dx. doi. org/10. 1016/j. jmatprotec. 2007. 03. 017.
DOI: 10.1016/j.jmatprotec.2007.03.017
Google Scholar
[19]
Morteza, A. S; Maohammad, N. R, (2014), Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM, Journal of Modern processes in manufacturing and production, 3 (2), 59-74.
Google Scholar
[20]
Vinod, Y; Aniruddha, D. (2008), Design of horn for rotary ultrasonic machining using the finite element method, International journal of advanced manufacturing technology, 39 (1), 9-20 DOI: 10. 1007/s00170-007-1193-7.
DOI: 10.1007/s00170-007-1193-7
Google Scholar
[21]
Guzzo, P.L.; Shinohara, A.H.; Raslan, A.A. (2004).
Google Scholar
[22]
Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1998), Review on ultrasonic machining, International journal of machine tools and manufacture, 38 (4), 239–255 http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.
DOI: 10.1016/s0890-6955(97)00036-9
Google Scholar
[23]
T.J. Drozda, C. Wick, (1983) Non-traditional machining, Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, Volume. 1, Dearborn, MI, p.1–23, ISBN No. 0872633519.
DOI: 10.1080/10426918908956323
Google Scholar
[24]
Seah, K.H.W.; Wong, Y.S.;. Lee, L.C. (1993), Design of tool holders for ultra-sonic machining using FEM, Journal of Material Processing Technology, 37 (1–4), 801–816. http: /dx. doi. org/10. 1016/0924-0136(93)90138-V.
DOI: 10.1016/0924-0136(93)90138-v
Google Scholar
[25]
Komaraiah, M.; Manan, M.A.;. Reddy, P. N.; Victor, S. (1988), Investigation of surface roughness and accuracy in ultrasonic machining, Precision Engineering, 10 (2), 59–65. http: /dx. doi. org/10. 1016/0141-6359(88)90001-3.
DOI: 10.1016/0141-6359(88)90001-3
Google Scholar
[26]
Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1995), "The effect of operating parameters when ultrasonic contour machining, in: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12), Cork, Ireland, p.305–312.
Google Scholar
[27]
Jain, V.K. Advanced Machining Process, Allied Publisher Pvt. Limited, India, 2002, p.28–56.
Google Scholar
[28]
Pandey, P.C.; Shan, H.S. Modern Machining Processes, Tata McGraw-Hill, 1980, p.7–38 [Chapter 2].
Google Scholar
[29]
Amin, S.G.; Ahmed, M.H.M.; Youssef, H.A. (1995).
Google Scholar
[30]
Kremer, D. (1981), The state of the art of ultrasonic machining, Ann. CIRP, 30 (1), 107–110. http: /dx. doi. org/10. 1016/S0007-8506(07)60905-6.
DOI: 10.1016/s0007-8506(07)60905-6
Google Scholar
[31]
Khairy, A.B.E. (1990), Assessment of some dynamic parameters for the ultra-sonic machining process, Wear, 137, 187–198 http: /dx. doi. org/10. 1016/0043-1648(90)90135-W.
DOI: 10.1016/0043-1648(90)90135-w
Google Scholar
[32]
Singh, K.; Ahuja, I.P.S. (2014), Ultrasonic machining processes- review paper, International Journal for multi-disciplinary Engineering and Business Management, 2 (3) 57-66.
Google Scholar
[33]
Singh, K.; Kumar, V. (2014).
Google Scholar
[34]
Singh, K.; Kumar, V.S. (2014), Finite Element Analysis of Ultrasonic Machine Tool, International journal of engineering research and technology, 3 (7), 1647-1650.
Google Scholar
[35]
Singh, K., Ahuja, I.P.S.; Kapoor. J. (2015).
Google Scholar
[36]
Singh, K., Ahuja, I.P.S. and Kapoor. J. (2015).
Google Scholar
[37]
Singh, K., Ahuja, I.P.S. and Kapoor. J. (2016).
Google Scholar
[38]
Adithan, M. (1981), Tool wear characteristics in ultrasonic drilling, Tribology International, 14 (6), 351–356. http: /dx. doi. org/10. 1016/0301-679X(81)90103-1.
DOI: 10.1016/0301-679x(81)90103-1
Google Scholar
[39]
Adithan, M. (1983), Abrasive wear in ultrasonic drilling, Tribology International, 16 (5), 253–255. http: /dx. doi. org/10. 1016/0301-679X(83)90083-X.
DOI: 10.1016/0301-679x(83)90083-x
Google Scholar
[40]
Babitsky, V.I.; Astashev, V.K. (2007), "Ultrasonic processes and machine, Springer Berlin Heidelberg New York, ISBN 978-3-540-72060-7.
Google Scholar
[41]
Jain, N.K.; Jain, V.K. (2001).
Google Scholar
[42]
Jain, V.; Sharma, A.K.; Kumar, P. (2012), Investigations on tool wear in micro Ultrasonic machining, Applied Mechanics and Material, Tranc Tech Publication Switzerland, 110-116, pp.1561-1566. DOI: 10. 4028/www. scientific. net/AMM. 110-116. 1561.
DOI: 10.4028/www.scientific.net/amm.110-116.1561
Google Scholar
[43]
I. Kaczmarek, Impact Grinding (Ultrasonic machining)—Book Chapter: 21 Principles of Machining by Cutting Abrasion and Erosion, Peter Peregrinus Ltd, Stevenage, 1976, p.448–462, ISBN 0901223662.
Google Scholar
[44]
Dharmadhikari, S.W.; Sharma, C.S. (1985), Optimization of abrasive life in Ultrasonic Machining, Journal of Manufacturing Science and Engineering, 107 (4), 361-364. doi: 10. 1115/1. 3186010.
DOI: 10.1115/1.3186010
Google Scholar
[45]
Bekrenev, N.V.; Muldasheve, G.K.; Petrovskii, A.P.; Tsvetkova, O.A. (2015).
Google Scholar
[46]
Vinod Kumar, J.S. Khamba, (2009).
Google Scholar
[47]
Chang, S.; Bone, G.M. (2005), Burr size reduction in drilling by ultrasonic assistance, Robotics and Computer-Integrated Manufacturing, 120, 442-450.
DOI: 10.1016/j.rcim.2004.11.005
Google Scholar
[48]
Fan, W.H.; Chao, C.L.; Chou, W.C.; Chen, T. T; Chao, C.W. (2009).
Google Scholar
[49]
Kumar, J.; Khamba, J.S. (2009).
Google Scholar
[50]
Schorderet,A. ; Deghilage, E.; Agbeviade, K. (2013), Tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass, Procedia CIRP, 565-570. http: /dx. doi. org/10. 1016/j. procir. 2013. 03. 072.
DOI: 10.1016/j.procir.2013.03.072
Google Scholar
[51]
Elliot, S.R. Physics of Amorphous Materials. Longman group ltd, London, New York, 20 (9) (1984), ISBN 0-582-44636-8.
DOI: 10.1002/crat.2170200922
Google Scholar
[52]
Scholze, H. Glass – Nature, Structure, and Properties. Springer, Verlag, New York, (1991) ISBN 978-1-4613-9069-5. DOI: 10. 1007/978-1-4612-9069-5.
Google Scholar
[53]
Folmer , J. C. W., Franzen, S. (2003), Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory, Journal of Chemical Education, 80 (7), 813-818. DOI: 10. 1021/ed080p813.
DOI: 10.1021/ed080p813
Google Scholar
[54]
Phillips D. C, Sambell R.A. J, Bowen D. H, (1972), The mechanical properties of carbon fiber reinforced pyrex glass, Journal of Material Science, 7 (12), 1454-1464. DOI: 10. 1007/BF00574937.
DOI: 10.1007/bf00574937
Google Scholar
[55]
Vogel, W.; Kreidl, N.; Chemistry of Glass, Wiley, 1985. ISBN 978-0-916094-73-7.
Google Scholar
[56]
Stookey, S.D.; Beall, G.H. Explorations in Glass: An Autobiography, Wiley, 2000, ISBN 978-1-57498-124-7.
Google Scholar
[57]
Noel C. Stokes, The Glass and Glazing Handbook, Standards Association of Australia, (1998) ISBN 073372468X.
Google Scholar
[58]
L.D. Rozenberg (Ed. ), Physical Principles of Ultrasonic Technology, volumes. 1 and 2, Plenum Press, New York, 1973, ISBN 978-1-4684-8217-1.
Google Scholar
[59]
William. S.; Jayad. H. Foundation of material science and engineering, 4tg Ed. McGraw-Hill. Pp. 509. ISBN 0-07-295358-6.
Google Scholar
[60]
Harper, C.A.; Petrie, E.M. Plastic materials and processes: A concise encyclopaedia, John Wiley and Sons, p.9, ISBN 978-0471-45920-0.
Google Scholar
[61]
V.C. Venkatesh, (1983), Machining of glass by impact processes, Journal of Mechanical Working Technology, 8, 247–260 http: /dx. doi. org/10. 1016/0378-3804(83)90042-6.
DOI: 10.1016/0378-3804(83)90042-6
Google Scholar
[62]
D.E. Clark, C.G. Pantano, Jr., L.L. Hench, Corrosion of Glass, Books for Industry, (1979).
Google Scholar
[63]
A. Paul, Chemistry of Glasses, 2nd Edition, Chapman and Hall, London, New York, 1990, ISBN 0-412-27820-0.
Google Scholar
[64]
Kuo, K.L. (2007), "Experimental investigation of brittle material milling using rotary ultrasonic machining. Proceedings of the 35th International MATADOR Conference, Springer: London, 195-198. DOI: 10. 1007/978-1-84628-988-0_43.
DOI: 10.1007/978-1-84628-988-0_43
Google Scholar