Study of Methods and Development of Technological Scheme for Heat Removal from Rock Waste Dump

Article Preview

Abstract:

The aim of this paper is to study the methods and develop technological scheme for thermal energy removal from coal mine rock waste dumps. The prospects of renewable energy sources development in Ukraine are analyzed. A number of available ways for using the sources of waste heat of mining enterprises, namely: outlet ventilation flow, mine water and other rock waste dumps, are investigated. The technological scheme of heat recovery from rock waste dump using heat pumps, which are component segments of the heat pump geosystem on the basis of borehole underground coal gasification, is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-135

Citation:

Online since:

November 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015).

Google Scholar

[2] State Statistics Service of Ukraine. Available online: http: /www. uabio. org/img/files/news/pdf/ energy-balance-ukraine-2015. pdf.

Google Scholar

[3] Bilodid, V.D. (2015). Vyroblennia ta spozhyvannia teplovoi enerhii v Ukraini u 2005–2013 rokakh. Problemy zahalnoi enerhetyky, 1(40). 39-46.

Google Scholar

[4] Petenko, A.V. (2014). Promyslovo-ekolohichna kontseptsiia upravlinnia protsesamy sotsialnoho rozvytku ekolohoskladnykh vuhlepromyslovykh rehioniv Donbasu. Visnyk sotsialno-ekonomichnykh doslidzhen, 1(52), 55-60.

Google Scholar

[5] Falshtynskyi, V.S., Dychkovskyi, R.O., Tabachenko, M.M., Saik, P.B. (2011). Sposoby rekuperatsii tepla porid pry pidzemnii hazyfikatsii vuhillia. Naukovo-tekhnichnyi zbirnyk Hirnycha elektromekhanika i avtomatyka, 86. 184-190.

Google Scholar

[6] Zhamoida, O. (2016). Managing mining enterprises' assets as the basis of their competitiveness. Mining of Mineral Deposits, 10(4), 50-55. https: /doi. org/10. 15407/mining10. 04. 050.

DOI: 10.15407/mining10.04.050

Google Scholar

[7] Brady, B. H. G., & Brown, E. T. (2007). Energy, mine stability, mine seismicity and rockbursts. Rock Mechanics for Underground Mining, 271-311.

DOI: 10.1007/978-1-4020-2116-9_10

Google Scholar

[8] Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https: /doi. org/10. 15407/mining11. 02. 001.

DOI: 10.15407/mining11.02.001

Google Scholar

[9] Perkov, Ye., & Perkova, T. (2017). Recycling of Prydniprovska thermal power plant fly ash. Mining of Mineral Deposits, 11(1), 106-112. https: /doi. org/10. 15407/mining11. 01. 106.

DOI: 10.15407/mining11.01.106

Google Scholar

[10] Samusia, V., Kyrychenko, V., Kyrychenko, Ye., Ilina, S., & Antonenko, А. (2017).

Google Scholar

[11] Underwood, C. P. (2016). Heat pump modelling. Advances in Ground-Source Heat Pump Systems, 387-421. https: /doi. org/10. 1016/b978-0-08-100311-4. 00014-5.

DOI: 10.1016/b978-0-08-100311-4.00014-5

Google Scholar

[12] Tkachenko, S.I., Ostapenko, O.P. (2007). Systematyzatsiia informatsii z rozrobky, doslidzhennia ta vprovadzhennia teplonasosnykh ustanovok. Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi: naukovo-tekhnichnyi zbirnyk, 4, 176-184.

Google Scholar

[13] Krukovskyi, O., Krukovska, V., & Vynohradov, Yu. (2017). Mathematical modeling of unsteady water filtration into anchored mine opening. Mining of Mineral Deposits, 11(2), 21-27. https: /doi. org/10. 15407/mining11. 02. 021.

DOI: 10.15407/mining11.02.021

Google Scholar

[14] Turkyilmazoglu, M. (2018). Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346-351. https: /doi. org/10. 1016/j. ijheatmasstransfer. 2017. 08. 091.

DOI: 10.1016/j.ijheatmasstransfer.2017.08.091

Google Scholar

[15] Tabachenko, M.M., Dychkovskyi, R.O., Falshtynskyi, V.S. (2010). Sposib utylizatsii tepla nadr. Patent No 50712, Ukraine.

Google Scholar

[16] Tabachenko, M., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Dychkovskyi R. (2016).

Google Scholar

[17] Macevytyi, Ju.M., Chyrkin, M.B., Cencyper, A.I. (2009). Teplonasosna ustanovka. Patent No. 85929, Ukraine.

Google Scholar

[18] Nitsche, M., & Gbadamosi, R. O. (2016). Geometrical Heat Exchanger Calculations. Heat Exchanger Design Guide, 65–74. https: /doi. org/10. 1016/b978-0-12-803764-5. 00004-3.

DOI: 10.1016/b978-0-12-803764-5.00004-3

Google Scholar

[19] Macevytyi, Ju.M., Chyrkin, M.B. (2012). Ustanovka dlia vidboru tepla z terykonu. Patent No. 100181, Ukraine.

Google Scholar

[20] Falshtynskyi, V., Dychkovskyi, R., Lozynskyi, V., & Saik, P. (2015).

Google Scholar

[21] Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016).

Google Scholar

[22] Dychkovskyi, R., Falshtynskyi, V., Lozynskyi, V., & Saik, P. (2015).

Google Scholar

[23] Saik, P.B., Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S. (2017). Sposib vidboru tepla z vidvaliv. Patent No. 113313, Ukraine.

Google Scholar

[24] Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469.

DOI: 10.1201/b17547-79

Google Scholar