A New XRD Method to Quantitatively Distinguish Non-Stoichiometric Magnetite: Influence of Particle Size and Processing Conditions

Article Preview

Abstract:

Magnetite’s abilities rely on the quantitative phases present in the sample. Magnetite quality can strongly influence several physical properties, such as magnetism, catalytic performance, and Verwey transition. However, differentiation of magnetite and maghemite through the conventional X-ray diffractogram comparison are not relevant for the intermediate phases. In this study, the deviation from the ideal stoichiometric magnetite and the relative quantification of both phases were mathematically achievable through a new XRD technique. Various synthesis conditions were applied to obtain different crystallite sizes, in the range of 9 to 30 nm. Generally, the stoichiometric deviation and maghemite content would be significantly influenced by the final size, whereas system conditions (temperature of solution, agitation rate, and pH of solution) would only have minor significance. In this study, iron oxide nanoparticles prepared using the co-precipitation method was calculated to contain 100% magnetite for particles of 30.26 nm in size, while 100% maghemite was calculated for particles at 9.64 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-52

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, Zhang L., Song X., Gu X., Sun H., Fu C. and Meng F., Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent, Journal of Nanomaterials. 2015 (2015) 6.

DOI: 10.1155/2015/417389

Google Scholar

[2] S. J. Mattingly, O'Toole M. G., James K. T., Clark G. J. and Nantz M. H., Magnetic Nanoparticle-Supported Lipid Bilayers for Drug Delivery, Langmuir. 31 (2015) 3326-32.

DOI: 10.1021/la504830z

Google Scholar

[3] B. H. X. Che, Yeap S. P., Ahmad A. L. and Lim J., Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation, Chem. Eng. J. 243 (2014) 68-78.

DOI: 10.1016/j.cej.2013.12.095

Google Scholar

[4] T. Sun, Zhao Z., Liang Z., Liu J., Shi W. and Cui F., Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles, Appl. Surf. Sci. 416 (2017) 656-65.

DOI: 10.1016/j.apsusc.2017.04.137

Google Scholar

[5] J. W. Halley, Schofield A. and Berntson B., Use of magnetite as anode for electrolysis of water, J. Appl. Phys. 111 (2012) 124911.

DOI: 10.1063/1.4730777

Google Scholar

[6] J. Nam, Huang H., Lim H., Lim C. and Shin S., Magnetic Separation of Malaria-Infected Red Blood Cells in Various Developmental Stages, Anal. Chem. 85 (2013) 7316-23.

DOI: 10.1021/ac4012057

Google Scholar

[7] C. Jiang, Leung C. W. and Pong P. W. T., Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications, Appl. Surf. Sci. 419 (2017) 692-96.

DOI: 10.1016/j.apsusc.2017.05.116

Google Scholar

[8] Y. Pan, Du X., Zhao F. and Xu B., Magnetic nanoparticles for the manipulation of proteins and cells, Chem. Soc. Rev. 41 (2012) 2912-42.

DOI: 10.1039/c2cs15315g

Google Scholar

[9] K. Zargoosh, Abedini H., Abdolmaleki A. and Molavian M. R., Effective Removal of Heavy Metal Ions from Industrial Wastes Using Thiosalicylhydrazide-Modified Magnetic Nanoparticles, Industrial & Engineering Chemistry Research. 52 (2013) 14944-54.

DOI: 10.1021/ie401971w

Google Scholar

[10] K. Mandel, Hutter F., Gellermann C. and Sextl G., Modified Superparamagnetic Nanocomposite Microparticles for Highly Selective HgII or CuII Separation and Recovery from Aqueous Solutions, ACS Applied Materials & Interfaces. 4 (2012) 5633-42.

DOI: 10.1021/am301910m

Google Scholar

[11] B. Saha, Das S., Saikia J. and Das G., Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study, The Journal of Physical Chemistry C. 115 (2011) 8024-33.

DOI: 10.1021/jp109258f

Google Scholar

[12] B. Sunkara, Zhan J., He J., McPherson G. L., Piringer G. and John V. T., Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons, ACS Applied Materials & Interfaces. 2 (2010).

DOI: 10.1021/am1005282

Google Scholar

[13] H. X. Che, Yeap S. P., Osman M. S., Ahmad A. L. and Lim J., Directed Assembly of Bifunctional Silica–Iron Oxide Nanocomposite with Open Shell Structure, ACS Applied Materials & Interfaces. 6 (2014) 16508-18.

DOI: 10.1021/am5050949

Google Scholar

[14] V. Torrisi, Graillot A., Vitorazi L., Crouzet Q., Marletta G., Loubat C. and Berret J. F., Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles, Biomacromolecules. 15 (2014).

DOI: 10.1021/bm500832q

Google Scholar

[15] C. Niu, Wang Z., Lu G., Krupka T. M., Sun Y., You Y., Song W., Ran H., Li P. and Zheng Y., Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes, Biomaterials. 34 (2013).

DOI: 10.1016/j.biomaterials.2012.12.003

Google Scholar

[16] A. J. Wagstaff, Brown S. D., Holden M. R., Craig G. E., Plumb J. A., Brown R. E., Schreiter N., Chrzanowski W. and Wheate N. J., Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields, Inorg. Chim. Acta. 393 (2012).

DOI: 10.1016/j.ica.2012.05.012

Google Scholar

[17] M. Das, Wang C., Bedi R., Mohapatra S. S. and Mohapatra S., Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury, Nanomedicine. 10 (2014) 1539-48.

DOI: 10.1016/j.nano.2014.01.003

Google Scholar

[18] S. Chikazumi, Graham C. D. and Oxford University P. Physics of ferromagnetism: Oxford University Press, Oxford, (2009).

Google Scholar

[19] E. Schmidbauer and Keller M., Magnetic hysteresis properties, Mössbauer spectra and structural data of spherical 250 nm particles of solid solutions –, J. Magn. Magn. Mater. 297 (2006) 107-17.

DOI: 10.1016/j.jmmm.2005.02.063

Google Scholar

[20] J. Santoyo Salazar, Perez L., de Abril O., Truong Phuoc L., Ihiawakrim D., Vazquez M., Greneche J.-M., Begin-Colin S. and Pourroy G., Magnetic Iron Oxide Nanoparticles in 10−40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties, Chem. Mater. 23 (2011).

DOI: 10.1021/cm103188a

Google Scholar

[21] R. L. Rebodos and Vikesland P. J., Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite, Langmuir. 26 (2010) 16745-53.

DOI: 10.1021/la102461z

Google Scholar

[22] E. J. W. Verwey, Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures, Nature. 144 (19/8/1939) 327-28.

DOI: 10.1038/144327b0

Google Scholar

[23] J. B. Yang, Zhou X. D., Yelon W. B., James W. J., Cai Q., Gopalakrishnan K. V., Malik S. K., Sun X. C. and Nikles D. E., Magnetic and structural studies of the Verwey transition in Fe3−δO4 nanoparticles, J. Appl. Phys. 95 (2004) 7540-42.

DOI: 10.1063/1.1669344

Google Scholar

[24] S. E. Aamrani, Giménez J., Rovira M., Seco F., Grivé M., Bruno J., Duro L. and de Pablo J., A spectroscopic study of uranium(VI) interaction with magnetite, Appl. Surf. Sci. 253 (2007) 8794-97.

DOI: 10.1016/j.apsusc.2007.04.076

Google Scholar

[25] E. S. Ilton, Boily J.-F., Buck E. C., Skomurski F. N., Rosso K. M., Cahill C. L., Bargar J. R. and Felmy A. R., Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite−Solution Interface, Environmental Science & Technology. 44 (2010).

DOI: 10.1021/es9014597

Google Scholar

[26] T. Missana, Maffiotte C. and Garcı́a-Gutiérrez M., Surface reactions kinetics between nanocrystalline magnetite and uranyl, J. Colloid Interface Sci. 261 (2003) 154-60.

DOI: 10.1016/s0021-9797(02)00227-8

Google Scholar

[27] D. E. Latta, Gorski C. A., Boyanov M. I., O'Loughlin E. J., Kemner K. M. and Scherer M. M., Influence of Magnetite Stoichiometry on UVI Reduction, Environmental Science & Technology. 46 (2012) 778-86.

DOI: 10.1021/es2024912

Google Scholar

[28] B. D. Cullity, Elements of X-Ray Diffraction, American Journal of Physics. 25 (1957) 394-95.

Google Scholar

[29] C. A. Gorski and Scherer M. M., Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review, American Mineralogist. 95 (2010) 1017-26.

DOI: 10.2138/am.2010.3435

Google Scholar

[30] W. Kim, Suh C.-Y., Cho S.-W., Roh K.-M., Kwon H., Song K. and Shon I.-J., A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique, Talanta. 94 (2012) 348-52.

DOI: 10.1016/j.talanta.2012.03.001

Google Scholar

[31] C. J. Serna and Morales M. P., Maghemite (γ-Fe2O3): A Versatile Magnetic Colloidal Material. Surface and Colloid Science. (2004) 27-81.

DOI: 10.1007/978-1-4419-9122-5_2

Google Scholar

[32] U. Schwertmann and Cornell R. M. Iron oxides in the laboratory : preparation and characterization: Wiley-VCH, Weinheim, (2000).

Google Scholar

[33] P. S. Sidhu, Gilkes R. J. and Posner A. M., Mechanism of the low temperature oxidation of synthetic magnetites, J. Inorg. Nucl. Chem. 39 (1977) 1953-58.

DOI: 10.1016/0022-1902(77)80523-x

Google Scholar

[34] N. Mahmed, Heczko O., Lancok A. and Hannula S. P., The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere, Journal of Magnetism and Magnetic Materials. 353 (2014).

DOI: 10.1016/j.jmmm.2013.10.012

Google Scholar

[35] J.-P. Jolivet and Tronc E., Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-γFe2O3 in aqueous medium, J. Colloid Interface Sci. 125 (1988) 688-701.

DOI: 10.1016/0021-9797(88)90036-7

Google Scholar

[36] M. N. Salimi, Bridson R. H., Grover L. M. and Leeke G. A., Effect of processing conditions on the formation of hydroxyapatite nanoparticles, Powder Technol. 218 (2012) 109-18.

DOI: 10.1016/j.powtec.2011.11.049

Google Scholar

[37] W. Cheng and Li Z., Precipitation of nesquehonite from homogeneous supersaturated solutions, Cryst. Res. Technol. 44 (2009) 937-47.

DOI: 10.1002/crat.200900286

Google Scholar

[38] S. Khan Umar, Amanullah, Manan A., Khan N., Mahmood A. and Rahim A., Transformation mechanism of magnetite nanoparticles. Materials Science-Poland. 33 (2015) 278.

DOI: 10.1515/msp-2015-0037

Google Scholar

[39] J. Tang, Myers M., Bosnick K. A. and Brus L. E., Magnetite Fe3O4 Nanocrystals:  Spectroscopic Observation of Aqueous Oxidation Kinetics, The Journal of Physical Chemistry B. 107 (2003) 7501-06.

DOI: 10.1021/jp027048e

Google Scholar

[40] T.-H. Kim, Lim D.-Y., Yu B.-S., Lee J.-H. and Goto M., Effect of Stirring and Heating Rate on the Formation of TiO2 Powders Using Supercritical Fluid, Industrial & Engineering Chemistry Research. 39 (2000) 4702-06.

DOI: 10.1021/ie0003133

Google Scholar

[41] G. Gnanaprakash, Mahadevan S., Jayakumar T., Kalyanasundaram P., Philip J. and Raj B., Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles, Mater. Chem. Phys. 103 (2007) 168-75.

DOI: 10.1016/j.matchemphys.2007.02.011

Google Scholar

[42] H. Iida, Takayanagi K., Nakanishi T. and Osaka T., Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, J. Colloid Interface Sci. 314 (2007) 274-80.

DOI: 10.1016/j.jcis.2007.05.047

Google Scholar

[43] N. M. Gribanov, Bibik E. E., Buzunov O. V. and Naumov V. N., Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation, J. Magn. Magn. Mater. 85 (1990) 7-10.

DOI: 10.1016/0304-8853(90)90005-b

Google Scholar

[44] M. Tajabadi and Khosroshahi M. E., Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH, International Journal of Chemical Engineering and Applications. 3 (2012) 206-10.

DOI: 10.7763/ijcea.2012.v3.187

Google Scholar

[45] T. Ozkaya, Toprak M. S., Baykal A., Kavas H., Köseoğlu Y. and Aktaş B., Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization, J. Alloys Compd. 472 (2009) 18-23.

DOI: 10.1016/j.jallcom.2008.04.101

Google Scholar

[46] J. R. Correa, Canetti D., Castillo R., Llópiz J. C. and Dufour J., Influence of the precipitation pH of magnetite in the oxidation process to maghemite, Mater. Res. Bull. 41 (2006) 703-13.

DOI: 10.1016/j.materresbull.2005.10.009

Google Scholar

[47] J. R. Rustad, Rosso K. M. and Felmy A. R., Molecular dynamics investigation of ferrous–ferric electron transfer in a hydrolyzing aqueous solution: Calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force, The Journal of Chemical Physics. 120 (2004).

DOI: 10.1063/1.1687318

Google Scholar

[48] S. Lian, Wang E., Kang Z., Bai Y., Gao L., Jiang M., Hu C. and Xu L., Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 129 (2004) 485-90.

DOI: 10.1016/j.ssc.2003.11.043

Google Scholar

[49] A. B. Mikhaylova, Sirotinkin V. P., Fedotov M. A., Korneyev V. P., Shamray B. F. and Kovalenko L. V., Quantitative determination of content of magnetite and maghemite in their mixtures by X-ray diffraction methods, Inorganic Materials: Applied Research. 7 (2016).

DOI: 10.1134/s2075113316010160

Google Scholar

[50] B. D. Cullity and Stock S. R. Elements of X-ray diffraction: Pearson/Prentice Hall, Upper Saddle River, NJ [u.a.], (2001).

Google Scholar

[51] M. Sanz, Oujja M., Rebollar E., Marco J. F., de la Figuera J., Monti M., Bollero A., Camarero J., Pedrosa F. J., García-Hernández M. and Castillejo M., Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition, Appl. Surf. Sci. 282 (2013).

DOI: 10.1016/j.apsusc.2013.06.026

Google Scholar

[52] S. Krehula and Musić S., Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media, J. Alloys Compd. 416 (2006) 284-90.

DOI: 10.1016/j.jallcom.2005.09.016

Google Scholar

[53] D. J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite, Journal of Geophysical Research. 78 (1973) 1780-93.

DOI: 10.1029/jb078i011p01780

Google Scholar

[54] S.-N. Sun, Wei C., Zhu Z.-Z., Hou Y.-L., Subbu S. V. and Xu Z.-C., Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications, Chinese Physics B. 23 (2014) 037503.

DOI: 10.1088/1674-1056/23/3/037503

Google Scholar

[55] M. M. Can, Ozcan S., Ceylan A. and Firat T., Effect of milling time on the synthesis of magnetite nanoparticles by wet milling, Materials Science and Engineering: B. 172 (2010) 72-75.

DOI: 10.1016/j.mseb.2010.04.019

Google Scholar