[1]
Y. Zhang, Zhang L., Song X., Gu X., Sun H., Fu C. and Meng F., Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent, Journal of Nanomaterials. 2015 (2015) 6.
DOI: 10.1155/2015/417389
Google Scholar
[2]
S. J. Mattingly, O'Toole M. G., James K. T., Clark G. J. and Nantz M. H., Magnetic Nanoparticle-Supported Lipid Bilayers for Drug Delivery, Langmuir. 31 (2015) 3326-32.
DOI: 10.1021/la504830z
Google Scholar
[3]
B. H. X. Che, Yeap S. P., Ahmad A. L. and Lim J., Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation, Chem. Eng. J. 243 (2014) 68-78.
DOI: 10.1016/j.cej.2013.12.095
Google Scholar
[4]
T. Sun, Zhao Z., Liang Z., Liu J., Shi W. and Cui F., Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles, Appl. Surf. Sci. 416 (2017) 656-65.
DOI: 10.1016/j.apsusc.2017.04.137
Google Scholar
[5]
J. W. Halley, Schofield A. and Berntson B., Use of magnetite as anode for electrolysis of water, J. Appl. Phys. 111 (2012) 124911.
DOI: 10.1063/1.4730777
Google Scholar
[6]
J. Nam, Huang H., Lim H., Lim C. and Shin S., Magnetic Separation of Malaria-Infected Red Blood Cells in Various Developmental Stages, Anal. Chem. 85 (2013) 7316-23.
DOI: 10.1021/ac4012057
Google Scholar
[7]
C. Jiang, Leung C. W. and Pong P. W. T., Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications, Appl. Surf. Sci. 419 (2017) 692-96.
DOI: 10.1016/j.apsusc.2017.05.116
Google Scholar
[8]
Y. Pan, Du X., Zhao F. and Xu B., Magnetic nanoparticles for the manipulation of proteins and cells, Chem. Soc. Rev. 41 (2012) 2912-42.
DOI: 10.1039/c2cs15315g
Google Scholar
[9]
K. Zargoosh, Abedini H., Abdolmaleki A. and Molavian M. R., Effective Removal of Heavy Metal Ions from Industrial Wastes Using Thiosalicylhydrazide-Modified Magnetic Nanoparticles, Industrial & Engineering Chemistry Research. 52 (2013) 14944-54.
DOI: 10.1021/ie401971w
Google Scholar
[10]
K. Mandel, Hutter F., Gellermann C. and Sextl G., Modified Superparamagnetic Nanocomposite Microparticles for Highly Selective HgII or CuII Separation and Recovery from Aqueous Solutions, ACS Applied Materials & Interfaces. 4 (2012) 5633-42.
DOI: 10.1021/am301910m
Google Scholar
[11]
B. Saha, Das S., Saikia J. and Das G., Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study, The Journal of Physical Chemistry C. 115 (2011) 8024-33.
DOI: 10.1021/jp109258f
Google Scholar
[12]
B. Sunkara, Zhan J., He J., McPherson G. L., Piringer G. and John V. T., Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons, ACS Applied Materials & Interfaces. 2 (2010).
DOI: 10.1021/am1005282
Google Scholar
[13]
H. X. Che, Yeap S. P., Osman M. S., Ahmad A. L. and Lim J., Directed Assembly of Bifunctional Silica–Iron Oxide Nanocomposite with Open Shell Structure, ACS Applied Materials & Interfaces. 6 (2014) 16508-18.
DOI: 10.1021/am5050949
Google Scholar
[14]
V. Torrisi, Graillot A., Vitorazi L., Crouzet Q., Marletta G., Loubat C. and Berret J. F., Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles, Biomacromolecules. 15 (2014).
DOI: 10.1021/bm500832q
Google Scholar
[15]
C. Niu, Wang Z., Lu G., Krupka T. M., Sun Y., You Y., Song W., Ran H., Li P. and Zheng Y., Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes, Biomaterials. 34 (2013).
DOI: 10.1016/j.biomaterials.2012.12.003
Google Scholar
[16]
A. J. Wagstaff, Brown S. D., Holden M. R., Craig G. E., Plumb J. A., Brown R. E., Schreiter N., Chrzanowski W. and Wheate N. J., Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields, Inorg. Chim. Acta. 393 (2012).
DOI: 10.1016/j.ica.2012.05.012
Google Scholar
[17]
M. Das, Wang C., Bedi R., Mohapatra S. S. and Mohapatra S., Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury, Nanomedicine. 10 (2014) 1539-48.
DOI: 10.1016/j.nano.2014.01.003
Google Scholar
[18]
S. Chikazumi, Graham C. D. and Oxford University P. Physics of ferromagnetism: Oxford University Press, Oxford, (2009).
Google Scholar
[19]
E. Schmidbauer and Keller M., Magnetic hysteresis properties, Mössbauer spectra and structural data of spherical 250 nm particles of solid solutions –, J. Magn. Magn. Mater. 297 (2006) 107-17.
DOI: 10.1016/j.jmmm.2005.02.063
Google Scholar
[20]
J. Santoyo Salazar, Perez L., de Abril O., Truong Phuoc L., Ihiawakrim D., Vazquez M., Greneche J.-M., Begin-Colin S. and Pourroy G., Magnetic Iron Oxide Nanoparticles in 10−40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties, Chem. Mater. 23 (2011).
DOI: 10.1021/cm103188a
Google Scholar
[21]
R. L. Rebodos and Vikesland P. J., Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite, Langmuir. 26 (2010) 16745-53.
DOI: 10.1021/la102461z
Google Scholar
[22]
E. J. W. Verwey, Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures, Nature. 144 (19/8/1939) 327-28.
DOI: 10.1038/144327b0
Google Scholar
[23]
J. B. Yang, Zhou X. D., Yelon W. B., James W. J., Cai Q., Gopalakrishnan K. V., Malik S. K., Sun X. C. and Nikles D. E., Magnetic and structural studies of the Verwey transition in Fe3−δO4 nanoparticles, J. Appl. Phys. 95 (2004) 7540-42.
DOI: 10.1063/1.1669344
Google Scholar
[24]
S. E. Aamrani, Giménez J., Rovira M., Seco F., Grivé M., Bruno J., Duro L. and de Pablo J., A spectroscopic study of uranium(VI) interaction with magnetite, Appl. Surf. Sci. 253 (2007) 8794-97.
DOI: 10.1016/j.apsusc.2007.04.076
Google Scholar
[25]
E. S. Ilton, Boily J.-F., Buck E. C., Skomurski F. N., Rosso K. M., Cahill C. L., Bargar J. R. and Felmy A. R., Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite−Solution Interface, Environmental Science & Technology. 44 (2010).
DOI: 10.1021/es9014597
Google Scholar
[26]
T. Missana, Maffiotte C. and Garcı́a-Gutiérrez M., Surface reactions kinetics between nanocrystalline magnetite and uranyl, J. Colloid Interface Sci. 261 (2003) 154-60.
DOI: 10.1016/s0021-9797(02)00227-8
Google Scholar
[27]
D. E. Latta, Gorski C. A., Boyanov M. I., O'Loughlin E. J., Kemner K. M. and Scherer M. M., Influence of Magnetite Stoichiometry on UVI Reduction, Environmental Science & Technology. 46 (2012) 778-86.
DOI: 10.1021/es2024912
Google Scholar
[28]
B. D. Cullity, Elements of X-Ray Diffraction, American Journal of Physics. 25 (1957) 394-95.
Google Scholar
[29]
C. A. Gorski and Scherer M. M., Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review, American Mineralogist. 95 (2010) 1017-26.
DOI: 10.2138/am.2010.3435
Google Scholar
[30]
W. Kim, Suh C.-Y., Cho S.-W., Roh K.-M., Kwon H., Song K. and Shon I.-J., A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique, Talanta. 94 (2012) 348-52.
DOI: 10.1016/j.talanta.2012.03.001
Google Scholar
[31]
C. J. Serna and Morales M. P., Maghemite (γ-Fe2O3): A Versatile Magnetic Colloidal Material. Surface and Colloid Science. (2004) 27-81.
DOI: 10.1007/978-1-4419-9122-5_2
Google Scholar
[32]
U. Schwertmann and Cornell R. M. Iron oxides in the laboratory : preparation and characterization: Wiley-VCH, Weinheim, (2000).
Google Scholar
[33]
P. S. Sidhu, Gilkes R. J. and Posner A. M., Mechanism of the low temperature oxidation of synthetic magnetites, J. Inorg. Nucl. Chem. 39 (1977) 1953-58.
DOI: 10.1016/0022-1902(77)80523-x
Google Scholar
[34]
N. Mahmed, Heczko O., Lancok A. and Hannula S. P., The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere, Journal of Magnetism and Magnetic Materials. 353 (2014).
DOI: 10.1016/j.jmmm.2013.10.012
Google Scholar
[35]
J.-P. Jolivet and Tronc E., Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-γFe2O3 in aqueous medium, J. Colloid Interface Sci. 125 (1988) 688-701.
DOI: 10.1016/0021-9797(88)90036-7
Google Scholar
[36]
M. N. Salimi, Bridson R. H., Grover L. M. and Leeke G. A., Effect of processing conditions on the formation of hydroxyapatite nanoparticles, Powder Technol. 218 (2012) 109-18.
DOI: 10.1016/j.powtec.2011.11.049
Google Scholar
[37]
W. Cheng and Li Z., Precipitation of nesquehonite from homogeneous supersaturated solutions, Cryst. Res. Technol. 44 (2009) 937-47.
DOI: 10.1002/crat.200900286
Google Scholar
[38]
S. Khan Umar, Amanullah, Manan A., Khan N., Mahmood A. and Rahim A., Transformation mechanism of magnetite nanoparticles. Materials Science-Poland. 33 (2015) 278.
DOI: 10.1515/msp-2015-0037
Google Scholar
[39]
J. Tang, Myers M., Bosnick K. A. and Brus L. E., Magnetite Fe3O4 Nanocrystals: Spectroscopic Observation of Aqueous Oxidation Kinetics, The Journal of Physical Chemistry B. 107 (2003) 7501-06.
DOI: 10.1021/jp027048e
Google Scholar
[40]
T.-H. Kim, Lim D.-Y., Yu B.-S., Lee J.-H. and Goto M., Effect of Stirring and Heating Rate on the Formation of TiO2 Powders Using Supercritical Fluid, Industrial & Engineering Chemistry Research. 39 (2000) 4702-06.
DOI: 10.1021/ie0003133
Google Scholar
[41]
G. Gnanaprakash, Mahadevan S., Jayakumar T., Kalyanasundaram P., Philip J. and Raj B., Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles, Mater. Chem. Phys. 103 (2007) 168-75.
DOI: 10.1016/j.matchemphys.2007.02.011
Google Scholar
[42]
H. Iida, Takayanagi K., Nakanishi T. and Osaka T., Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, J. Colloid Interface Sci. 314 (2007) 274-80.
DOI: 10.1016/j.jcis.2007.05.047
Google Scholar
[43]
N. M. Gribanov, Bibik E. E., Buzunov O. V. and Naumov V. N., Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation, J. Magn. Magn. Mater. 85 (1990) 7-10.
DOI: 10.1016/0304-8853(90)90005-b
Google Scholar
[44]
M. Tajabadi and Khosroshahi M. E., Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH, International Journal of Chemical Engineering and Applications. 3 (2012) 206-10.
DOI: 10.7763/ijcea.2012.v3.187
Google Scholar
[45]
T. Ozkaya, Toprak M. S., Baykal A., Kavas H., Köseoğlu Y. and Aktaş B., Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization, J. Alloys Compd. 472 (2009) 18-23.
DOI: 10.1016/j.jallcom.2008.04.101
Google Scholar
[46]
J. R. Correa, Canetti D., Castillo R., Llópiz J. C. and Dufour J., Influence of the precipitation pH of magnetite in the oxidation process to maghemite, Mater. Res. Bull. 41 (2006) 703-13.
DOI: 10.1016/j.materresbull.2005.10.009
Google Scholar
[47]
J. R. Rustad, Rosso K. M. and Felmy A. R., Molecular dynamics investigation of ferrous–ferric electron transfer in a hydrolyzing aqueous solution: Calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force, The Journal of Chemical Physics. 120 (2004).
DOI: 10.1063/1.1687318
Google Scholar
[48]
S. Lian, Wang E., Kang Z., Bai Y., Gao L., Jiang M., Hu C. and Xu L., Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 129 (2004) 485-90.
DOI: 10.1016/j.ssc.2003.11.043
Google Scholar
[49]
A. B. Mikhaylova, Sirotinkin V. P., Fedotov M. A., Korneyev V. P., Shamray B. F. and Kovalenko L. V., Quantitative determination of content of magnetite and maghemite in their mixtures by X-ray diffraction methods, Inorganic Materials: Applied Research. 7 (2016).
DOI: 10.1134/s2075113316010160
Google Scholar
[50]
B. D. Cullity and Stock S. R. Elements of X-ray diffraction: Pearson/Prentice Hall, Upper Saddle River, NJ [u.a.], (2001).
Google Scholar
[51]
M. Sanz, Oujja M., Rebollar E., Marco J. F., de la Figuera J., Monti M., Bollero A., Camarero J., Pedrosa F. J., García-Hernández M. and Castillejo M., Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition, Appl. Surf. Sci. 282 (2013).
DOI: 10.1016/j.apsusc.2013.06.026
Google Scholar
[52]
S. Krehula and Musić S., Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media, J. Alloys Compd. 416 (2006) 284-90.
DOI: 10.1016/j.jallcom.2005.09.016
Google Scholar
[53]
D. J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite, Journal of Geophysical Research. 78 (1973) 1780-93.
DOI: 10.1029/jb078i011p01780
Google Scholar
[54]
S.-N. Sun, Wei C., Zhu Z.-Z., Hou Y.-L., Subbu S. V. and Xu Z.-C., Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications, Chinese Physics B. 23 (2014) 037503.
DOI: 10.1088/1674-1056/23/3/037503
Google Scholar
[55]
M. M. Can, Ozcan S., Ceylan A. and Firat T., Effect of milling time on the synthesis of magnetite nanoparticles by wet milling, Materials Science and Engineering: B. 172 (2010) 72-75.
DOI: 10.1016/j.mseb.2010.04.019
Google Scholar