[1]
C. A. Duarte, E. Espejo, and J. C. Martinez, Failure analysis of the wall tubes of a water-tube boiler,, Engineering Failure Analysis, Vol. 79, pp.704-713, (2017).
DOI: 10.1016/j.engfailanal.2017.05.032
Google Scholar
[2]
Q. Ding, X.-F. Tang, and Z.-G. Yang, Failure analysis on abnormal corrosion of economizer tubes in a waste heat boiler,, Engineering Failure Analysis, Vol. 73, pp.129-138, (2017).
DOI: 10.1016/j.engfailanal.2016.12.011
Google Scholar
[3]
M. Loghman-Estarki, R. S. Razavi, H. Edris, S. Bakhshi, M. Nejati, and H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings,, Ceramics international, Vol. 42, No. 6, pp.7432-7439, (2016).
DOI: 10.1016/j.ceramint.2016.01.147
Google Scholar
[4]
K. Goyal, H. Singh, and R. Bhatia, Current Status of Thermal Spray Coatings for High Temperature Corrosion Resistance of Boiler Steel,, Journal of Material & Metallurgical Engineering, Vol. 6, No. 1, pp.29-35, (2016).
Google Scholar
[5]
V. P. S. Sidhu, K. Goyal, and R. Goyal, Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant,, Journal of the Australian Ceramic Society, pp.1-8, (2017).
DOI: 10.1007/s41779-017-0107-x
Google Scholar
[6]
S. Saladi, J. Menghani, and S. Prakash, Hot Corrosion Behaviour of Detonation-Gun Sprayed Cr3C2–NiCr Coating on Inconel-718 in Molten Salt Environment at 900 C,, Transactions of the Indian Institute of Metals, Vol. 67, No. 5, pp.623-627, (2014).
DOI: 10.1007/s12666-014-0383-x
Google Scholar
[7]
V. P. Singh Sidhu, K. Goyal, and R. Goyal, Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment,, in Advanced Engineering Forum, 2017, pp.1-9.
DOI: 10.4028/www.scientific.net/aef.20.1
Google Scholar
[8]
P. Bengtsson and T. Johannesson, Characterization of microstructural defects in plasma-sprayed thermal barrier coatings,, Journal of Thermal Spray Technology, Vol. 4, No. 3, pp.245-251, (1995).
DOI: 10.1007/bf02646967
Google Scholar
[9]
G. Fargas, D. Casellas, L. Llanes, and M. Anglada, Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks,, Journal of the European Ceramic Society, Vol. 23, No. 1, pp.107-114, (2003).
DOI: 10.1016/s0955-2219(02)00065-1
Google Scholar
[10]
S. Mohsen, A. Abbas, and K. Akira, Bond coat oxidation and hot corrosion behaviour of plasma sprayed YSZ coating on Ni based superalloy,, Trans. JWRI, Vol. 36, No. 1, pp.41-45, (2007).
Google Scholar
[11]
M. Saremi, A. Afrasiabi, and A. Kobayashi, Microstructural analysis of YSZ and YSZ/Al 2 O 3 plasma sprayed thermal barrier coatings after high temperature oxidation,, Surface and Coatings Technology, Vol. 202, No. 14, pp.3233-3238, (2008).
DOI: 10.1016/j.surfcoat.2007.11.029
Google Scholar
[12]
S. Yugeswaran, C. Yoganand, A. Kobayashi, K. Paraskevopoulos, and B. Subramanian, Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying,, Journal of the mechanical behavior of biomedical materials, Vol. 9, pp.22-33, (2012).
DOI: 10.1016/j.jmbbm.2011.11.002
Google Scholar
[13]
S. Iijima, Helical microtubules of graphitic carbon,, nature, Vol. 354, No. 6348, p.56, (1991).
DOI: 10.1038/354056a0
Google Scholar
[14]
E. T. Thostenson, C. Li, and T.-W. Chou, Nanocomposites in context,, Composites Science and Technology, Vol. 65, No. 3, pp.491-516, (2005).
DOI: 10.1016/j.compscitech.2004.11.003
Google Scholar
[15]
K.-T. Lau, M. Chipara, H.-Y. Ling, and D. Hui, On the effective elastic moduli of carbon nanotubes for nanocomposite structures,, Composites Part B: Engineering, Vol. 35, No. 2, pp.95-101, (2004).
DOI: 10.1016/j.compositesb.2003.08.008
Google Scholar
[16]
C. Deng, D. Wang, X. Zhang, and A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites,, Materials Science and engineering: A, Vol. 444, No. 1, pp.138-145, (2007).
DOI: 10.1016/j.msea.2006.08.057
Google Scholar
[17]
A. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,, Composites Science and Technology, Vol. 70, No. 16, pp.2237-2241, (2010).
DOI: 10.1016/j.compscitech.2010.05.004
Google Scholar
[18]
I.-Y. Kim, J.-H. Lee, G.-S. Lee, S.-H. Baik, Y.-J. Kim, and Y.-Z. Lee, Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions,, Wear, Vol. 267, No. 1, pp.593-598, 2009/06/15/ (2009).
DOI: 10.1016/j.wear.2008.12.096
Google Scholar
[19]
Y. Feng, H. L. Yuan, and M. Zhang, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes,, Materials Characterization, Vol. 55, No. 3, pp.211-218, (2005).
DOI: 10.1016/j.matchar.2005.05.003
Google Scholar
[20]
A. K. Keshri, V. Singh, J. Huang, S. Seal, W. Choi, and A. Agarwal, Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating,, Surface and Coatings Technology, Vol. 204, No. 11, pp.1847-1855, (2010).
DOI: 10.1016/j.surfcoat.2009.11.032
Google Scholar
[21]
K. Balani, S. P. Harimkar, A. Keshri, Y. Chen, N. B. Dahotre, and A. Agarwal, Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating,, Acta Materialia, Vol. 56, No. 20, pp.5984-5994, (2008).
DOI: 10.1016/j.actamat.2008.08.020
Google Scholar
[22]
C. F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernández, B. Alonso, V. G. Rocha, et al., Wear behavior of graphene/alumina composite,, Ceramics International, Vol. 41, No. 6, pp.7434-7438, 7// (2015).
DOI: 10.1016/j.ceramint.2015.02.061
Google Scholar
[23]
W. Guo and H.-Y. Tam, Effects of carbon nanotubes on wear of WC/Co micropunches,, The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 1-4, pp.269-275, 2014/04/01 (2014).
DOI: 10.1007/s00170-014-5661-6
Google Scholar
[24]
E. Edward Anand and S. Natarajan, Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings,, Journal of Materials Engineering & Performance, Vol. 24, No. 1, (2015).
DOI: 10.1007/s11665-014-1306-z
Google Scholar
[25]
A. K. Keshri and A. Agarwal, Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation,, Surface and Coatings Technology, Vol. 206, No. 2, pp.338-347, (2011).
DOI: 10.1016/j.surfcoat.2011.07.025
Google Scholar
[26]
K. Balani and A. Agarwal, Process map for plasma sprayed aluminum oxide—Carbon nanotube nanocomposite coatings,, Metal Finishing, Vol. 106, No. 10, pp.45-51, (2008).
DOI: 10.1016/s0026-0576(08)80204-8
Google Scholar
[27]
A. Portinha, V. Teixeira, J. Carneiro, J. Martins, M. Costa, R. Vassen, et al., Characterization of thermal barrier coatings with a gradient in porosity,, Surface and coatings technology, Vol. 195, No. 2, pp.245-251, (2005).
DOI: 10.1016/j.surfcoat.2004.07.094
Google Scholar
[28]
K. M. Jasim, Laser sealing of zirconia–yttria–alumina plasma sprayed coating,, Journal of King Saud University-Engineering Sciences, Vol. 25, No. 1, pp.11-20, (2013).
DOI: 10.1016/j.jksues.2011.10.004
Google Scholar
[29]
S. V. Bhaskar, T. Rajmohan, K. Palanikumar, and B. B. G. Kumar, Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites,, Journal of The Institution of Engineers (India): Series D, Vol. 97, No. 1, pp.59-67, (2016).
DOI: 10.1007/s40033-015-0074-8
Google Scholar
[30]
P. R. Silva, V. O. Almeida, G. B. Machado, E. V. Benvenutti, T. M. Costa, and M. r. R. Gallas, Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol–gel method,, Langmuir, Vol. 28, No. 2, pp.1447-1452, (2011).
DOI: 10.1021/la203056f
Google Scholar
[31]
P. Hvizdoš, V. Puchý, A. Duszová, and J. Dusza, Carbon nanofibers reinforced ceramic matrix composites,, in Nanofibers, ed: InTech Open Access Publishers Rijeka, 2011, pp.241-266.
Google Scholar
[32]
K. Balani, T. Zhang, A. Karakoti, W. Li, S. Seal, and A. Agarwal, In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating,, Acta materialia, Vol. 56, No. 3, pp.571-579, (2008).
DOI: 10.1016/j.actamat.2007.10.038
Google Scholar
[33]
R. Goyal, B. S. Sidhu, and V. Chawla, Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel,, The International Journal of Advanced Manufacturing Technology, pp.1-11, (2017).
DOI: 10.1007/s00170-017-0405-z
Google Scholar
[34]
D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, and H. Jang, Effect of CNT distribution on tribological behavior of alumina–CNT composites,, Wear, Vol. 259, No. 1, pp.539-544, (2005).
DOI: 10.1016/j.wear.2005.02.031
Google Scholar