Effect of Carbon Nanotubes on Properties of Ceramics Based Composite Coatings

Article Preview

Abstract:

In the present work, 2% and 6% carbon nanotubes (CNT) were reinforced in chromium oxide powder and were deposited on T22 steel using high velocity oxy-fuel spraying process. The effect of CNT reinforcement on hardness and porosity was investigated. The hardness was observed to be highest for coating reinforced with 6%CNT and hardness was found to increase with decrease in porosity. The coating microstructure and elements were characterised using field emission scanning electron microscopy (FE-SEM) with energy dispersive spectroscope (EDS), Elemental point analysis and X-ray mapping analysis. The constituents of the coating were identified using X-ray diffractometer. It was found that the CNT were uniformly distributed throughout Cr2O3 matrix. The CNT were found to be chemically inert during the spraying process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-66

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. A. Duarte, E. Espejo, and J. C. Martinez, Failure analysis of the wall tubes of a water-tube boiler,, Engineering Failure Analysis, Vol. 79, pp.704-713, (2017).

DOI: 10.1016/j.engfailanal.2017.05.032

Google Scholar

[2] Q. Ding, X.-F. Tang, and Z.-G. Yang, Failure analysis on abnormal corrosion of economizer tubes in a waste heat boiler,, Engineering Failure Analysis, Vol. 73, pp.129-138, (2017).

DOI: 10.1016/j.engfailanal.2016.12.011

Google Scholar

[3] M. Loghman-Estarki, R. S. Razavi, H. Edris, S. Bakhshi, M. Nejati, and H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings,, Ceramics international, Vol. 42, No. 6, pp.7432-7439, (2016).

DOI: 10.1016/j.ceramint.2016.01.147

Google Scholar

[4] K. Goyal, H. Singh, and R. Bhatia, Current Status of Thermal Spray Coatings for High Temperature Corrosion Resistance of Boiler Steel,, Journal of Material & Metallurgical Engineering, Vol. 6, No. 1, pp.29-35, (2016).

Google Scholar

[5] V. P. S. Sidhu, K. Goyal, and R. Goyal, Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant,, Journal of the Australian Ceramic Society, pp.1-8, (2017).

DOI: 10.1007/s41779-017-0107-x

Google Scholar

[6] S. Saladi, J. Menghani, and S. Prakash, Hot Corrosion Behaviour of Detonation-Gun Sprayed Cr3C2–NiCr Coating on Inconel-718 in Molten Salt Environment at 900 C,, Transactions of the Indian Institute of Metals, Vol. 67, No. 5, pp.623-627, (2014).

DOI: 10.1007/s12666-014-0383-x

Google Scholar

[7] V. P. Singh Sidhu, K. Goyal, and R. Goyal, Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment,, in Advanced Engineering Forum, 2017, pp.1-9.

DOI: 10.4028/www.scientific.net/aef.20.1

Google Scholar

[8] P. Bengtsson and T. Johannesson, Characterization of microstructural defects in plasma-sprayed thermal barrier coatings,, Journal of Thermal Spray Technology, Vol. 4, No. 3, pp.245-251, (1995).

DOI: 10.1007/bf02646967

Google Scholar

[9] G. Fargas, D. Casellas, L. Llanes, and M. Anglada, Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks,, Journal of the European Ceramic Society, Vol. 23, No. 1, pp.107-114, (2003).

DOI: 10.1016/s0955-2219(02)00065-1

Google Scholar

[10] S. Mohsen, A. Abbas, and K. Akira, Bond coat oxidation and hot corrosion behaviour of plasma sprayed YSZ coating on Ni based superalloy,, Trans. JWRI, Vol. 36, No. 1, pp.41-45, (2007).

Google Scholar

[11] M. Saremi, A. Afrasiabi, and A. Kobayashi, Microstructural analysis of YSZ and YSZ/Al 2 O 3 plasma sprayed thermal barrier coatings after high temperature oxidation,, Surface and Coatings Technology, Vol. 202, No. 14, pp.3233-3238, (2008).

DOI: 10.1016/j.surfcoat.2007.11.029

Google Scholar

[12] S. Yugeswaran, C. Yoganand, A. Kobayashi, K. Paraskevopoulos, and B. Subramanian, Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying,, Journal of the mechanical behavior of biomedical materials, Vol. 9, pp.22-33, (2012).

DOI: 10.1016/j.jmbbm.2011.11.002

Google Scholar

[13] S. Iijima, Helical microtubules of graphitic carbon,, nature, Vol. 354, No. 6348, p.56, (1991).

DOI: 10.1038/354056a0

Google Scholar

[14] E. T. Thostenson, C. Li, and T.-W. Chou, Nanocomposites in context,, Composites Science and Technology, Vol. 65, No. 3, pp.491-516, (2005).

DOI: 10.1016/j.compscitech.2004.11.003

Google Scholar

[15] K.-T. Lau, M. Chipara, H.-Y. Ling, and D. Hui, On the effective elastic moduli of carbon nanotubes for nanocomposite structures,, Composites Part B: Engineering, Vol. 35, No. 2, pp.95-101, (2004).

DOI: 10.1016/j.compositesb.2003.08.008

Google Scholar

[16] C. Deng, D. Wang, X. Zhang, and A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites,, Materials Science and engineering: A, Vol. 444, No. 1, pp.138-145, (2007).

DOI: 10.1016/j.msea.2006.08.057

Google Scholar

[17] A. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,, Composites Science and Technology, Vol. 70, No. 16, pp.2237-2241, (2010).

DOI: 10.1016/j.compscitech.2010.05.004

Google Scholar

[18] I.-Y. Kim, J.-H. Lee, G.-S. Lee, S.-H. Baik, Y.-J. Kim, and Y.-Z. Lee, Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions,, Wear, Vol. 267, No. 1, pp.593-598, 2009/06/15/ (2009).

DOI: 10.1016/j.wear.2008.12.096

Google Scholar

[19] Y. Feng, H. L. Yuan, and M. Zhang, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes,, Materials Characterization, Vol. 55, No. 3, pp.211-218, (2005).

DOI: 10.1016/j.matchar.2005.05.003

Google Scholar

[20] A. K. Keshri, V. Singh, J. Huang, S. Seal, W. Choi, and A. Agarwal, Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating,, Surface and Coatings Technology, Vol. 204, No. 11, pp.1847-1855, (2010).

DOI: 10.1016/j.surfcoat.2009.11.032

Google Scholar

[21] K. Balani, S. P. Harimkar, A. Keshri, Y. Chen, N. B. Dahotre, and A. Agarwal, Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating,, Acta Materialia, Vol. 56, No. 20, pp.5984-5994, (2008).

DOI: 10.1016/j.actamat.2008.08.020

Google Scholar

[22] C. F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernández, B. Alonso, V. G. Rocha, et al., Wear behavior of graphene/alumina composite,, Ceramics International, Vol. 41, No. 6, pp.7434-7438, 7// (2015).

DOI: 10.1016/j.ceramint.2015.02.061

Google Scholar

[23] W. Guo and H.-Y. Tam, Effects of carbon nanotubes on wear of WC/Co micropunches,, The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 1-4, pp.269-275, 2014/04/01 (2014).

DOI: 10.1007/s00170-014-5661-6

Google Scholar

[24] E. Edward Anand and S. Natarajan, Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings,, Journal of Materials Engineering & Performance, Vol. 24, No. 1, (2015).

DOI: 10.1007/s11665-014-1306-z

Google Scholar

[25] A. K. Keshri and A. Agarwal, Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation,, Surface and Coatings Technology, Vol. 206, No. 2, pp.338-347, (2011).

DOI: 10.1016/j.surfcoat.2011.07.025

Google Scholar

[26] K. Balani and A. Agarwal, Process map for plasma sprayed aluminum oxide—Carbon nanotube nanocomposite coatings,, Metal Finishing, Vol. 106, No. 10, pp.45-51, (2008).

DOI: 10.1016/s0026-0576(08)80204-8

Google Scholar

[27] A. Portinha, V. Teixeira, J. Carneiro, J. Martins, M. Costa, R. Vassen, et al., Characterization of thermal barrier coatings with a gradient in porosity,, Surface and coatings technology, Vol. 195, No. 2, pp.245-251, (2005).

DOI: 10.1016/j.surfcoat.2004.07.094

Google Scholar

[28] K. M. Jasim, Laser sealing of zirconia–yttria–alumina plasma sprayed coating,, Journal of King Saud University-Engineering Sciences, Vol. 25, No. 1, pp.11-20, (2013).

DOI: 10.1016/j.jksues.2011.10.004

Google Scholar

[29] S. V. Bhaskar, T. Rajmohan, K. Palanikumar, and B. B. G. Kumar, Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites,, Journal of The Institution of Engineers (India): Series D, Vol. 97, No. 1, pp.59-67, (2016).

DOI: 10.1007/s40033-015-0074-8

Google Scholar

[30] P. R. Silva, V. O. Almeida, G. B. Machado, E. V. Benvenutti, T. M. Costa, and M. r. R. Gallas, Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol–gel method,, Langmuir, Vol. 28, No. 2, pp.1447-1452, (2011).

DOI: 10.1021/la203056f

Google Scholar

[31] P. Hvizdoš, V. Puchý, A. Duszová, and J. Dusza, Carbon nanofibers reinforced ceramic matrix composites,, in Nanofibers, ed: InTech Open Access Publishers Rijeka, 2011, pp.241-266.

Google Scholar

[32] K. Balani, T. Zhang, A. Karakoti, W. Li, S. Seal, and A. Agarwal, In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating,, Acta materialia, Vol. 56, No. 3, pp.571-579, (2008).

DOI: 10.1016/j.actamat.2007.10.038

Google Scholar

[33] R. Goyal, B. S. Sidhu, and V. Chawla, Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel,, The International Journal of Advanced Manufacturing Technology, pp.1-11, (2017).

DOI: 10.1007/s00170-017-0405-z

Google Scholar

[34] D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, and H. Jang, Effect of CNT distribution on tribological behavior of alumina–CNT composites,, Wear, Vol. 259, No. 1, pp.539-544, (2005).

DOI: 10.1016/j.wear.2005.02.031

Google Scholar