Sulphite Electrooxidation in Alkaline Media on Skeletal Nickel Based 6 Layers Platinum Nanoparticles Electrode

Article Preview

Abstract:

In this paper, anodic oxidation of sulphite ions on skeletal nickel based platinum nanoparticles electrode (6 layers) in aqueous alkaline solution was investigated in order to find the relationship between kinetic parameters and sulphite concentration. The purpose of this research is both to understand the oxidation mechanism and determine optimal parameters for oxidation process. Electrochemical behavior of sulphite ions has been studied by cyclic voltammetry and linear polarization. Tafel method was used in order to determine kinetic parameters and electrochemical impedance spectroscopy studies were performed to confirm the oxidation mechanism. For a complete characterization of sulphite electrooxidation process chrono-electrochemical methods (chronoamperometry, chronopotentiometry, chronocoulometry) were used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-187

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Alhassan, M. Umar Garba, Design of an Alkaline Fuel Cell, Leonardo El. J. Pract. Technol. 9 (2006) 99-106.

Google Scholar

[2] R.C.T. Slade, J.P. Kizewski, S.D. Poynton, R. Zeng, J.R. Varcoe, Encyclopedia of Sustainability Science and Technology, ed. R. A. Meyers, New York, 2013, pp.10-11.

Google Scholar

[3] A.F. Enache, N. Vaszilcsin, M.L. Dan, Anodic Oxidation of Sulphite in Alkaline Solutions on Skeletal Nickel Electrode. I. Voltammetric Studies, Chem. Bull. Politehnica, Univ. Timisoara, Series Chem. Environ. Eng., 61(75) 1 (2016) 12-16.

DOI: 10.19261/cjm.2017.408

Google Scholar

[4] E. Skavas, A. Adriaens, T. Hemmingsen, A Comparative Study of Sulphite Oxidation Under Alkaline Conditions by Use of Wall-jet Flow Cell and Rotating Disc Electrode, Int. J. Electrochem. Sci., 1 (2006) 414-424.

Google Scholar

[5] A. M. Pisoschi, Electroanalytical Techniques for the Determination of Sulphite Preservative: An Editorial, Biochem Anal Biochem, 3(2) (2014) 1000e151.

DOI: 10.4172/2161-1009.1000e151

Google Scholar

[6] E. Skavas, T. Hemmingsen, Kinetics and mechanism of sulphite oxidation on a rotating platinum disc electrode in an alkaline solution, Electrochim Acta 52 (2007) 3510-3517.

DOI: 10.1016/j.electacta.2006.10.038

Google Scholar

[7] T. Hunger, F. Lapicque, A. Storck, Electrochemical oxidation of sulphite ions at graphite electrodes, J Appl Electrochem, 21 (1991) 588–596.

DOI: 10.1007/bf01024846

Google Scholar

[8] A. Enache, M.L. Dan, N. Vaszilcsin, Anodic Oxidation of Sulphite in Alkaline Solutions on Calcium Doped Cobalt Layered Perovskite Type 114 Electrode, Annals of University of Oradea, Fascicle Environmental Protection, 25 (2015), 185-192.

Google Scholar

[9] J.A.D. Del Rosario, J.D. Ocon, H. Jeon, Y. Yi, J.K. Lee, J. Lee, Enhancing Role of Nickel in the Nickel–Palladium Bilayer for Electrocatalytic Oxidation of Ethanol in Alkaline Media, J. Phys. Chem. C, 118(39) (2014) 22473–22478.

DOI: 10.1021/jp411601c

Google Scholar

[10] C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, J.g Gong, Steam reforming of ethanol over skeletal Ni-based catalysts: A temperature programmed desorption and kinetic study, AIChE J 60 (2014) 635–644.

DOI: 10.1002/aic.14264

Google Scholar

[11] X. Hu, G.X. Lu, Inhibition of methane formation in steam reforming reactions through modification of Ni catalyst and the reactants, Green Chem. 11(5) (2009) 724–732.

DOI: 10.1039/b814009j

Google Scholar

[12] A. Iacob, M. Dan, A. Kellenberger, N. Vaszilcsin, Hydrogen Evolution Reaction on Nickel-Based Platinum Electrodes. Chem. Bull. Politehnica, Univ. Timisoara, Series Chem. and Environ. Eng., 59(73) 2 (2014) 42-45.

Google Scholar

[13] D.A. Duca, M. L. Dan, N. Vaszilcsin, Voltammetric Studies of Methanol Electrooxidation in Alkaline Solutions on Skeletal Nickel Based 6 Layers Platinum Nanoparticles Electrode, Proceedings of the Georgian National Academy Of Sciences, Chemical Series, 42(3) (2016).

DOI: 10.4028/www.scientific.net/aef.27.176

Google Scholar

[14] A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique, Int. J. Hydrogen Energy. 32(15) (2007) 3258–3265.

DOI: 10.1016/j.ijhydene.2007.02.028

Google Scholar

[15] J.M. Skowronski, A. Wazny, Nickel Foam-based Ni(OH)2/NiOOH Electrode as Catalytic System for Methanol Oxidation in Alkaline Solution, J. New Mat. Electrochem. Systems 9 (2006) 345-351.

Google Scholar

[16] M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O'Brien, L. Russell, Hydrous Nickel Oxide: Redox Switching and the Oxygen Evolution Reaction in Aqueous Alkaline Solution, J. Electrochem. Soc. 159(12) (2012) H932-H944.

DOI: 10.1149/2.078212jes

Google Scholar

[17] M.L. Dan, N. Vaszilcsin, A.F. Enache, Anodic Oxidation of Sulphite in Alkaline Solutions on Skeletal Nickel Electrode II. Chrono–Amperometric, Potentiometric, Coulometric and Electrochemical Impedance Studies, Chem. Bull. POLITEHNICA, Univ. (Timisoara), 61(75) 2 (2016).

Google Scholar