[1]
M. Alhassan, M. Umar Garba, Design of an Alkaline Fuel Cell, Leonardo El. J. Pract. Technol. 9 (2006) 99-106.
Google Scholar
[2]
R.C.T. Slade, J.P. Kizewski, S.D. Poynton, R. Zeng, J.R. Varcoe, Encyclopedia of Sustainability Science and Technology, ed. R. A. Meyers, New York, 2013, pp.10-11.
Google Scholar
[3]
A.F. Enache, N. Vaszilcsin, M.L. Dan, Anodic Oxidation of Sulphite in Alkaline Solutions on Skeletal Nickel Electrode. I. Voltammetric Studies, Chem. Bull. Politehnica, Univ. Timisoara, Series Chem. Environ. Eng., 61(75) 1 (2016) 12-16.
DOI: 10.19261/cjm.2017.408
Google Scholar
[4]
E. Skavas, A. Adriaens, T. Hemmingsen, A Comparative Study of Sulphite Oxidation Under Alkaline Conditions by Use of Wall-jet Flow Cell and Rotating Disc Electrode, Int. J. Electrochem. Sci., 1 (2006) 414-424.
Google Scholar
[5]
A. M. Pisoschi, Electroanalytical Techniques for the Determination of Sulphite Preservative: An Editorial, Biochem Anal Biochem, 3(2) (2014) 1000e151.
DOI: 10.4172/2161-1009.1000e151
Google Scholar
[6]
E. Skavas, T. Hemmingsen, Kinetics and mechanism of sulphite oxidation on a rotating platinum disc electrode in an alkaline solution, Electrochim Acta 52 (2007) 3510-3517.
DOI: 10.1016/j.electacta.2006.10.038
Google Scholar
[7]
T. Hunger, F. Lapicque, A. Storck, Electrochemical oxidation of sulphite ions at graphite electrodes, J Appl Electrochem, 21 (1991) 588–596.
DOI: 10.1007/bf01024846
Google Scholar
[8]
A. Enache, M.L. Dan, N. Vaszilcsin, Anodic Oxidation of Sulphite in Alkaline Solutions on Calcium Doped Cobalt Layered Perovskite Type 114 Electrode, Annals of University of Oradea, Fascicle Environmental Protection, 25 (2015), 185-192.
Google Scholar
[9]
J.A.D. Del Rosario, J.D. Ocon, H. Jeon, Y. Yi, J.K. Lee, J. Lee, Enhancing Role of Nickel in the Nickel–Palladium Bilayer for Electrocatalytic Oxidation of Ethanol in Alkaline Media, J. Phys. Chem. C, 118(39) (2014) 22473–22478.
DOI: 10.1021/jp411601c
Google Scholar
[10]
C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, J.g Gong, Steam reforming of ethanol over skeletal Ni-based catalysts: A temperature programmed desorption and kinetic study, AIChE J 60 (2014) 635–644.
DOI: 10.1002/aic.14264
Google Scholar
[11]
X. Hu, G.X. Lu, Inhibition of methane formation in steam reforming reactions through modification of Ni catalyst and the reactants, Green Chem. 11(5) (2009) 724–732.
DOI: 10.1039/b814009j
Google Scholar
[12]
A. Iacob, M. Dan, A. Kellenberger, N. Vaszilcsin, Hydrogen Evolution Reaction on Nickel-Based Platinum Electrodes. Chem. Bull. Politehnica, Univ. Timisoara, Series Chem. and Environ. Eng., 59(73) 2 (2014) 42-45.
Google Scholar
[13]
D.A. Duca, M. L. Dan, N. Vaszilcsin, Voltammetric Studies of Methanol Electrooxidation in Alkaline Solutions on Skeletal Nickel Based 6 Layers Platinum Nanoparticles Electrode, Proceedings of the Georgian National Academy Of Sciences, Chemical Series, 42(3) (2016).
DOI: 10.4028/www.scientific.net/aef.27.176
Google Scholar
[14]
A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique, Int. J. Hydrogen Energy. 32(15) (2007) 3258–3265.
DOI: 10.1016/j.ijhydene.2007.02.028
Google Scholar
[15]
J.M. Skowronski, A. Wazny, Nickel Foam-based Ni(OH)2/NiOOH Electrode as Catalytic System for Methanol Oxidation in Alkaline Solution, J. New Mat. Electrochem. Systems 9 (2006) 345-351.
Google Scholar
[16]
M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O'Brien, L. Russell, Hydrous Nickel Oxide: Redox Switching and the Oxygen Evolution Reaction in Aqueous Alkaline Solution, J. Electrochem. Soc. 159(12) (2012) H932-H944.
DOI: 10.1149/2.078212jes
Google Scholar
[17]
M.L. Dan, N. Vaszilcsin, A.F. Enache, Anodic Oxidation of Sulphite in Alkaline Solutions on Skeletal Nickel Electrode II. Chrono–Amperometric, Potentiometric, Coulometric and Electrochemical Impedance Studies, Chem. Bull. POLITEHNICA, Univ. (Timisoara), 61(75) 2 (2016).
Google Scholar