[1]
J. Davidovits, Geopolymers: Ceramic-like inorganic polymers,, J. Ceram. Sci. Technol., vol. 8, no. 3, p.335–350, (2017).
Google Scholar
[2]
Y. M. Liew et al., Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder,, Constr. Build. Mater., vol. 37, p.440–451, (2012).
DOI: 10.1016/j.conbuildmat.2012.07.075
Google Scholar
[3]
C. Tippayasam et al., Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer,, Constr. Build. Mater., vol. 104, p.293–297, (2016).
DOI: 10.1016/j.conbuildmat.2015.11.027
Google Scholar
[4]
L. Chen, Z. Wang, Y. Wang, and J. Feng, Preparation and properties of alkali activated metakaolin-based geopolymer,, Materials (Basel)., vol. 9, no. 9, p.1–12, (2016).
DOI: 10.3390/ma9090767
Google Scholar
[5]
C. Y. Heah et al., Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers,, Constr. Build. Mater., vol. 35, p.912–922, (2012).
DOI: 10.1016/j.conbuildmat.2012.04.102
Google Scholar
[6]
M. Lizcano, H. S. Kim, S. Basu, and M. Radovic, Mechanical properties of sodium and potassium activated metakaolin-based geopolymers,, J. Mater. Sci., vol. 47, no. 6, p.2607–2616, (2012).
DOI: 10.1007/s10853-011-6085-4
Google Scholar
[7]
P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. Van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 269, no. 1–3, p.47–58, (2005).
DOI: 10.1016/j.colsurfa.2005.06.060
Google Scholar
[8]
P. J. Davidovits, 30 Years of Successes and Failures in Geopolymer Applications . Market Trends and Potential Breakthroughs .,, Geopolymer 2002 Conf., p.1–16, (2002).
Google Scholar
[9]
P. Rovnaník and S. O. Al, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer,, vol. 24, p.1176–1183, (2010).
DOI: 10.1016/j.conbuildmat.2009.12.023
Google Scholar
[10]
T. Bakharev, Resistance of geopolymer materials to acid attack,, Cem. Concr. Res., vol. 35, no. 4, p.658–670, (2005).
Google Scholar
[11]
F. N. Degirmenci, Freeze-Thaw and Fire Resistance of Geopolymer Mortar Based on Natural and Waste Pozzolans,, Ceram. - Silikaty, vol. 62, no. 1, p.1–9, (2017).
DOI: 10.13168/cs.2017.0043
Google Scholar
[12]
M. A. Villaquirán-Caicedo, R. M. de Gutiérrez, S. Sulekar, C. Davis, and J. C. Nino, Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources,, Appl. Clay Sci., vol. 118, no. OCTOBER, p.276–282, (2015).
DOI: 10.1016/j.clay.2015.10.005
Google Scholar
[13]
J. Temuujin and A. van Riessen, Effect of fly ash preliminary calcination on the properties of geopolymer,, J. Hazard. Mater., (2009).
DOI: 10.1016/j.jhazmat.2008.08.065
Google Scholar
[14]
M. Rowles and B. O'Connor, Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite,, J. Mater. Chem., vol. 13, no. 5, p.1161–1165, (2003).
DOI: 10.1039/b212629j
Google Scholar
[15]
X. Yao, Z. Zhang, H. Zhu, and Y. Chen, Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry,, Thermochim. Acta, vol. 493, no. 1–2, p.49–54, (2009).
DOI: 10.1016/j.tca.2009.04.002
Google Scholar
[16]
D. Panias, I. P. Giannopoulou, and T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 301, no. 1–3, p.246–254, (2007).
DOI: 10.1016/j.colsurfa.2006.12.064
Google Scholar
[17]
Z. Zuhua, Y. Xiao, Z. Huajun, and C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer,, Appl. Clay Sci., vol. 43, no. 2, p.218–223, (2009).
DOI: 10.1016/j.clay.2008.09.003
Google Scholar