A Fuzzy Behavioral TOPSIS Model in Manufacturing Environment

Article Preview

Abstract:

In this study, a novel fuzzy behavioral TOPSIS model was proposed. Sensitivity analysis is conducted according to the behavioral TOPSIS model parameter (λ) for the different case studies taken from the literature. The ranking results are slightly different according to different λ values. The results of the study can be used in material and manufacturing method selection problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-80

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lootsma, F.A., Multi-criteria decision analysis via ratio and difference judgement,, Kluwer Academic Publishers,(1999).

DOI: 10.1007/b102374

Google Scholar

[2] Roy, B.,In: J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis: State of the art surveys, (pp.3-24). Springer Science + Business Media, Inc.,(2005).

Google Scholar

[3] Behzadian, M., Kazemzadeh, R.B., Aghdasi, M., Albadvi, A., PROMETHEE: A comprehensive literature review of applications and methodologies,, European Journal of Operational Research, 200(1), 198–215, (2010).

DOI: 10.1016/j.ejor.2009.01.021

Google Scholar

[4] Vaidya, O.S. and Kumar, S., Analytic hierarchy process: An overview of applications,, European Journal of Operational Research, 169(1), 1–29, (2006).

DOI: 10.1016/j.ejor.2004.04.028

Google Scholar

[5] Ho, W., Integrated analytic hierarchy process and its applications – a literature review,, European Journal of Operational Research, 186(1), 211–228, (2008).

DOI: 10.1016/j.ejor.2007.01.004

Google Scholar

[6] Hwang, C.L. and Yoon, K.P., Multiple attribute decision making: Methods and applications,, New York: Springer-Verlag.,(1981).

Google Scholar

[7] Banaitiene, N., Banaitis, A., Kaklauskas, A., & Zavadskas, E.K., Evaluating the life cycle of a building: A multivariant and multiple criteria approach,, Omega, 36, 429–441,(2008).

DOI: 10.1016/j.omega.2005.10.010

Google Scholar

[8] Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J., A state-of the-art survey of TOPSIS applications,, Expert Systems with Applications, 39, 13051–13069, (2012).

DOI: 10.1016/j.eswa.2012.05.056

Google Scholar

[9] Zavadskas, E.K., Skibniewski, M.J., & Antucheviciene, J.,Performance analysis of Civil Engineering J. Archives of Civil and Mechanical Engineering,, 14, 519–527,(2014).

DOI: 10.1016/j.acme.2014.05.008

Google Scholar

[10] Dadelo, S., Turskis, Z., Zavadskas, E. K., & Dadeliene, R., Multi-criteria assessment and ranking system of sport team formation based on objective measured values of criteria set,, Expert Systems with Applications, 41, 6106–6113, (2014).

DOI: 10.1016/j.eswa.2014.03.036

Google Scholar

[11] Shyur, H.-J. and Shih, H.-S., A hybrid MCDM model for strategic vendor selection,, Mathematical and Computer Modelling, 44, 749–761,(2006).

DOI: 10.1016/j.mcm.2005.04.018

Google Scholar

[12] Yazdani-Chamzini, A., Shariati, S., Haji Yakhchali, S., & Zavadskas, E. K., Proposing a new methodology for prioritising the investment strategies in the private sector of Iran,, Economic Research-Ekonomska Istrazˇivanja, 27, 320–345, (2014).

DOI: 10.1080/1331677x.2014.947150

Google Scholar

[13] Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. R., & Hashemi, S. S., Extension of weighted aggregated sum product assessment with interval valued intuitionistic fuzzy numbers (WASPAS-IVIF),, Applied Soft Computing, 24, 1013–1021, (2014).

DOI: 10.1016/j.asoc.2014.08.031

Google Scholar

[14] Streimikiene, D., Balezentis, T., Krisciukaitiene, I., & Balezentis, A., Prioritizing sustainable electricity production technologies: MCDM approach,, Renewable and Sustainable Energy Reviews, 16, 3302–3311, (2012).

DOI: 10.1016/j.rser.2012.02.067

Google Scholar

[15] Yang, S.H. and Ju, Y.B., A novel multiple attributematerial selection approachwith uncertain membership linguistic information,, Mater. Des. 63, 664–671, (2014).

DOI: 10.1016/j.matdes.2014.06.049

Google Scholar

[16] Anojkumar, L., Ilangkumaran, M., Sasirekha, V., Comparative analysis of MCDM methods for pipe material selection in sugar industry,, Expert Syst. Appl. 41, 2964–2980, (2014).

DOI: 10.1016/j.eswa.2013.10.028

Google Scholar

[17] Yoon, K.P. and Kim, W.K., The behavioral TOPSIS,, Expert Syst. Appl. 89, 266–272, (2017).

Google Scholar

[18] Rathod, M.K. and Kanzaria, H.V., A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment,, Mater. Des. 32, 3578–3585, (2011).

DOI: 10.1016/j.matdes.2011.02.040

Google Scholar

[19] Maity, S.R. and Chakraborty, S., Turbine blade material selection using fuzzy analytic network process,, Int. J. Mater. Struct. Integr. 6 (2/3/4), 169–189, (2012).

DOI: 10.1504/ijmsi.2012.049954

Google Scholar

[20] Kahraman, C., Öztayşi, B., Sari, I.U, Turanoğlu, E., Fuzzy analytic hierarchy process with interval type-2 fuzzy sets,, Knowl.-Based Syst. 59, 48–57, (2014).

DOI: 10.1016/j.knosys.2014.02.001

Google Scholar

[21] Liao, T.W., A fuzzy multicriteria decision-making method for material selection,, J. Manuf. Syst. 15 (1), 1–12, (1996).

Google Scholar

[22] Kul, Y., Şeker, A., Yurdakul, M., Usage of fuzzy multi criteria decision making methods in selection of nontraditional manufacturing methods,, Journal of the faculty of Engineering and Architecture of Gazi University, 29 (3), 589-603, (2014).

Google Scholar

[23] Yurdakul, M. and Çoğun, C.,Development of a multi-attribute selection procedure for nontraditional machining processes,, Proceedings of the Institution of Mechanical Engineers-- Part B: Journal of Engineering Manufacture, 17, 993-1009, (2003).

DOI: 10.1243/09544050360686851

Google Scholar