[1]
LOVINGER, A.J. Poly(vinylidene fluoride). In: BASSET, D. C. Developments in crystalline polymers. London: Applied Science, 1982. pp.196-273.
DOI: 10.1007/978-94-009-7343-5_5
Google Scholar
[2]
SENCADAS, V. J. G. S. Influência das condições de processamento na morfologia e fases cristalinas do PVDF e nas transições de fase do copolímero P(VDF-TrFE). 2005. 115 f. Dissertação (Mestrado) - Universidade de Moinho – Uminho, Gualtar, (2005).
Google Scholar
[3]
NALWA, H. S. (Ed.). Ferroelectric polymers: chemistry, physics, and applications. New York: Marcel Dekker, (1995).
Google Scholar
[4]
ARKEMA. KYNAR PVDF. 2012. Disponível em: <http://www.kynar.com/pdf/techpoly/portuguese.pdf>. Access in:07 maio (2012).
Google Scholar
[5]
BROADHURST, M. G.; DAVIS, G. T.; MCKINNEY, J. E.; COLLINS, R. E. Piezoelectricity and pyroelectricity in polyvinylidene fluoride: a model. Journal Applied Physics, College Park, v. 49, n. 10, pp.4992-4997, (1978).
DOI: 10.1063/1.324445
Google Scholar
[6]
KAWAI, H. The piezoelectricity of poly(vinilidene fluoride). Journal Applied Physics, Tokyo, v. 8, pp.975-976, (1969).
Google Scholar
[7]
BERGMAN JR, J. G.; MCFEE, J. H.; CRANE, G. R. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Applied Physics Letters, Holmdel, v. 18, n. 5, pp.203-205, (1971).
DOI: 10.1063/1.1653624
Google Scholar
[8]
FUKADA, E. History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Piscataway, v. 47, n. 6, pp.1277-1290, (2000).
DOI: 10.1109/58.883516
Google Scholar
[9]
FURUKAWA, T.; DATE, M.; FUKADA, E.; TAJITSU, Y.; CHIBA, A. Ferroeléctric behavior in the copolymer of vinilidenefluoride and trifluorethylene. Journal Applied Physics, Tokyo, v. 19, n. 2, p. L109-L112, (1980).
DOI: 10.1143/jjap.19.l109
Google Scholar
[10]
LANG, S. B.; MUENSIT, S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A - Materials Science & Processing, Heidelberg, v. 85, pp.125-134, (2006).
DOI: 10.1007/s00339-006-3688-8
Google Scholar
[11]
GREGORIO JR, R.; CAPITÃO, R. C. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). Journal of Materials Science, New York, v. 35, pp.299-306, (2000).
Google Scholar
[12]
COSTA, L. M. M.; BRETAS, R. E. S.; GREGÓRIO, R. Jr. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Materials Sciences and Applications, Irvine, v. 1, pp.247-252, (2010).
DOI: 10.4236/msa.2010.14036
Google Scholar
[13]
GREGÓRIO FILHO, R. Influência das condições de cristalização na morfologia de filmes de polifluoreto de vinilideno (PVDF). Polímeros: Ciência e Tecnologia, São Carlos, v. 3, n. 2, pp.20-27, (1993).
DOI: 10.1590/s0104-14282002000300015
Google Scholar
[14]
GREGORIO JR, R.; BORGES, D. S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, Oxford, v. 49, n. 18, pp.4009-4016, (2008).
DOI: 10.1016/j.polymer.2008.07.010
Google Scholar
[15]
KEPLER, R. G.; NALWA, H. S. (Ed.). Ferroelectric polymers: chemistry, physics, and applications. New York: Marcel Dekker, 1995. Cap. 3, pp.183-185.
Google Scholar
[16]
COSTA, L. M. M.; BRETAS, R. E. S.; GREGORIO JUNIOR, R. Caracterização de filmes de PVDF-β obtidos por diferentes técnicas. Polímeros: Ciência e Tecnologia, São Carlos, v. 19, n. 3, pp.1-7, (2009).
DOI: 10.1590/s0104-14282009000300005
Google Scholar
[17]
ZULFIQAR, S.; ZULFIQAR, M.; RIZVI, M.; MUNIR, A. Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polymer Degradation and Stability, London, v. 43, n. 3, pp.423-430, (1994).
DOI: 10.1016/0141-3910(94)90015-9
Google Scholar
[18]
SHUAI, W.; YAPENG, L.; XIAOLIANG, F.; MINGDA, S.; CHAOQUN, Z.; YAHXIAN, L.; QINGBIAO, Y.; XIA, H. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. Journal of Colloid and Interface Science, Maryland, v. 359, n. 2, pp.380-388, (2011).
DOI: 10.1016/j.jcis.2011.04.004
Google Scholar
[19]
ROACH, P.; SHIRTCLIFFE, N. J.; NEWTON, M. I. Progess in superhydrophobic surface development. Soft Matter, Cambridge, v. 4, pp.224-240, (2008).
DOI: 10.1039/b712575p
Google Scholar