Systematic and Novel Approach to Modeling, Analysis and Control of Grid Tied PV Power Supply System Using Integral State Feedback Control and State Observer

Article Preview

Abstract:

Today, the share of global energy mix related to renewable energy technologies is rising drastically. The main reason behind this new trend is associated with many global challenges. Sustainable development, climate change and the need for alternative sources of energy are some of the driving forces and also reason’s powering technological innovation in energy sector. However, in order to achieve climate change goals, technological advancements of green energy must be accelerated. In this paper, a grid connected three phase photo-voltaic power supply system using integral state feedback control and state observer has been examined and proposed. Mathematical modeling of main components of the PV system including the power grids, solar panels, DC-DC converter and DC-AC inverter are performed. In addition, in order to increase the efficiency of the proposed system a maximum power point tracking algorithm using fuzzy logic control is introduced. Finally, simulation results using MATLAB shows the effectiveness of the proposed solution. Keyword: PV system, green energy, DC-DC converter, DC-AC converter, Maximum power point tracking.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-109

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] YUE, Xi-Liu; GAO, Qing-Xian (2019). Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research 9, 243-252 [Online]. Available: http://unfccc.int/resource/docs/convkp/kpeng.

DOI: 10.1016/j.accre.2018.12.003

Google Scholar

[2] U.S. Energy Information Administration (EIA). (2018) International Energy Outlook 2018. [Online]. Available: http://www.eia.gov/forecasts/ieo/pdf/0484 (2019).

Google Scholar

[3] Kebede, A.B., Worku, G.B., 2020. Robust DC-DC Boost Converter Control for Integration of Fuel Cell with Renewable Energy Sources. JERA 49, 68–83.

DOI: 10.4028/www.scientific.net/jera.49.68

Google Scholar

[4] Roman, Eduardo, et al. Intelligent PV module for grid-connected PV systems., IEEE Transactions on Industrial electronics 53.4 1066-1073, (2006).

DOI: 10.1109/tie.2006.878327

Google Scholar

[5] Milosevic, Mirjana. Hysteresis current control in three-phase voltage source inverter., (2003).

Google Scholar

[6] Isen, Evren. Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter., Proc. 17th International Conference on Electrical and Power Engineering, Holland. (2015).

Google Scholar

[7] Nelson A. Patel, Jaydeep C. Baria" A Hysteresis Current Control Technique for Electronics Convertor" Vol. 5, Issue 2, February (2016).

Google Scholar

[8] H. Moon, J. Lee, J. Lee and K. Lee, Model predictive control of a grid-connected inverter to reduce current ripples and computation loads,, IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp.1097-1102.

DOI: 10.1109/apec.2017.7930832

Google Scholar

[9] Zammit, Daniel; Spiteri Staines, Cyril; Apap, Maurice; Licari, John (2017). Design of PR current control with selective harmonic compensators using Matlab. Journal of Electrical Systems and Information Technology 4, 347-358.

DOI: 10.1016/j.jesit.2017.01.003

Google Scholar

[10] Heredero-Peris, Daniel; Chillón-Antón, Cristian; Sánchez-Sánchez, Enric; Montesinos-Miracle, Daniel (2019). Fractional proportional-resonant current controllers for voltage source converters. Electric Power Systems Research, 168, 20–45.

DOI: 10.1016/j.epsr.2018.09.014

Google Scholar

[11] Teodorescu, R.; Blaabjerg, F.; Liserre, M.; Loh, P.C. Proportional-resonant controllers and filters for grid- connected voltage-source converters. IEE Proc. Electr. Power Appl. 2006, 153, 750–762.

DOI: 10.1049/ip-epa:20060008

Google Scholar

[12] Abusara, M.A.; Sharkh, S.M. Design of a robust digital current controller for a grid connected interleaved inverter. In Proceedings of the IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July (2010).

DOI: 10.1109/isie.2010.5637288

Google Scholar

[13] Bana, Sangram; Saini, R.P. (2016). A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems. Energy Reports, 2, 171–187.

DOI: 10.1016/j.egyr.2016.06.004

Google Scholar

[14] A. Al Tarabsheh, I. Etier, M. Akmal, A. Sweleh and M. Ghazal, Modeling of series-connected photovoltaic cells,, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, 2016, pp.1523-1526.

DOI: 10.1109/pvsc.2016.7749873

Google Scholar

[15] Q. Hao, Z. Zhou, Z. Wei and G. Chen, Parameters Identification of Photovoltaic Models Using a Multi-Strategy Success-History-Based Adaptive Differential Evolution,, in IEEE Access, vol. 8, pp.35979-35994, (2020).

DOI: 10.1109/access.2020.2975078

Google Scholar

[16] Frede Blaabjerg, Remus Teodorescu, Marco Liserre, and Adrian V. Timbus, «Overview of Control and Grid Synchronization for Distributed Power Generation Systems», IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 5, OCTOBER (2006).

DOI: 10.1109/tie.2006.881997

Google Scholar

[17] Mohamed Hariri, M.H.; Mat Desa, M.K.; Masri, S.; Mohd Zainuri, M.A.A. Grid-Connected PV Generation System—Components and Challenges: A Review. Energies 2020, 13, 4279.

DOI: 10.3390/en13174279

Google Scholar

[18] Lawrence O. Aghenta, M. Tariq Iqbal, Design and Dynamic Modelling of a Hybrid Power System for a House in Nigeria,, International Journal of Photoenergy, vol. 2019, Article ID 6501785, 13 pages, (2019).

DOI: 10.1155/2019/6501785

Google Scholar

[19] Doncker, R. W. D., Meyer, C., Lenke, R. U. & Mura, F. (Nov 2007), Power Electronics for future utility applications, in Proc. IEEE 7th Int. Conf. Power Electron. Drive System., pp. K-1–K-8.

DOI: 10.1109/peds.2007.4487666

Google Scholar

[20] Enslin, J. H. & Snyman, D. B., (Jan 1991), Combined low-cost, high efficient inverter,peak power tracker and regulator for PV applications, IEEETrans. Power Electron. vol. 6, no. 1, p.73– 82.

DOI: 10.1109/63.65005

Google Scholar

[21] R. Karthikeyan and G. N. S. Amreiss, PV Based Interleaved Boost Converter for Pumping Applications,, International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, 2018, pp.1-4.

DOI: 10.1109/icias.2018.8540613

Google Scholar

[22] M. Chorishiya and D. K. Palwalia, Analysis of Interleaved Coupled Inductor Ultra-Boost Converter for Solar PV Applications,, 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 2019, pp.351-355.

DOI: 10.1109/peeic47157.2019.8976660

Google Scholar

[23] Kebede, A.B., Worku, G.B (2020). Comprehensive review and performance evaluation of maximum power point tracking algorithms for photovoltaic system. Global Energy Interconnection, 3(4), 398–412.

DOI: 10.1016/j.gloei.2020.10.008

Google Scholar

[24] IEEE Standards Association. IEEE Std. 1547-2003. Standard for Interconnecting Distributed Resources with Electric Power Systems; IEEE Standards Association: Piscataway, NJ, USA, (2003).

DOI: 10.1109/ieeestd.2008.4816078

Google Scholar

[25] Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for micro grid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766.

DOI: 10.1016/j.rser.2015.01.016

Google Scholar

[26] Nguyen, T.H.; Kim, K.H. Finite control set—Model predictive control with modulation to mitigate harmonic component in output current for a grid-connected inverter under distorted grid conditions. Energies 2017, 10, 907.

DOI: 10.3390/en10070907

Google Scholar

[27] Trinh, Q.N.; Lee, H.H. An advanced current control strategy for three-phase shunt active power filters. IEEE Trans. Ind. Electron. 2013, 60, 5400–5410.

DOI: 10.1109/tie.2012.2229677

Google Scholar

[28] Ignacio Villanueva, Nimrod Vázquez, Joaquín Vaquero, Claudia Hernández, Héctor López, Rene Osorio, L vs. LCL Filter for Photovoltaic Grid-Connected Inverter: A Reliability Study,, International Journal of Photoenergy, vol. (2020).

DOI: 10.1155/2020/7872916

Google Scholar

[29] S. Madanzadeh, S. S. H. Bukhari and J. -S. Ro, Multifunctional Grid-Connected Voltage Source Inverter to Drive Induction Motor Operating with High-Inertia Load,, in IEEE Access, vol. 8, (2020).

DOI: 10.1109/access.2020.3034805

Google Scholar

[30] Y. Li, J. Li, Y. Lei and W. Sun, Grid synchronization technology for distributed power generation system,, 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 2014, pp.1-6.

DOI: 10.1109/itec-ap.2014.6941268

Google Scholar

[31] Han, Y.; Shen, P.; Zhao, X.; Guerrero, J. Control strategies for islanded micro-grid using enhanced hierarchical control structure with multiple current-loop damping schemes. IEEE Trans. Smart Grid 2017, 8, 1139–1153.

DOI: 10.1109/tsg.2015.2477698

Google Scholar

[32] Gonzatti, R.B.; Ferreira, S.C.; da Silva, C.H.; Pereira, R.R.; da Silva, L.E.B.; Lambert-Torres, G. Using smart impedance to transform high impedance microgrid in a quasi-infinite busbar. IEEE Trans. Smart Grid 2017, 8, 428–436.

DOI: 10.1109/tsg.2016.2590986

Google Scholar

[33] Kebede, A.B., Worku, G.B (2020). Harmonic Analysis of Traction Power Supply System: Case Study of Addis Ababa Light Rail. IET transportation in electrical system, pp.1-12.

DOI: 10.1049/iet-est.2019.0130

Google Scholar