[1]
Butler, T., J. Alfano, R. Martens and M. Weaver (2015). High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys., Jom, 67(1): 246-259.
DOI: 10.1007/s11837-014-1185-7
Google Scholar
[2]
Cabral Miramontes, J., G. K. Pedraza Basulto, C. Gaona Tiburcio, P. D. C. Zambrano Robledo, C. A. Poblano Salas and F. Almeraya Calderón (2018). Coatings characterization of Ni-based alloy applied by HVOF., Aircraft Engineering and Aerospace Technology, 90(2): 336-343.
DOI: 10.1108/aeat-09-2016-0146
Google Scholar
[3]
Chatha, S. S., H. S. Sidhu and B. S. Sidhu (2016). Performance of 75Cr3C2-25NiCr coating produced by HVOF process in a coal-fired thermal power plant., Advanced Materials Research, Trans Tech Publ.
DOI: 10.4028/www.scientific.net/amr.1137.88
Google Scholar
[4]
Dorfman, M. R. (2018). Thermal spray coatings. Book Thermal spray coatings., Elsevier: 469-488.
DOI: 10.1016/b978-0-323-52472-8.00023-x
Google Scholar
[5]
Dudziak, T., T. Hussain and N. J. Simms (2017). High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits., Journal of Materials Engineering and Performance, 26(1): 84-93.
DOI: 10.1007/s11665-016-2423-7
Google Scholar
[6]
Dudziak, T., A. Olbrycht, A. Polkowska, L. Boron, P. Skierski, A. Wypych, A. Ambroziak and A. Krezel (2018). High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials., IOP Conference Series: Materials Science and Engineering, IOP Publishing.
DOI: 10.1088/1757-899x/329/1/012010
Google Scholar
[7]
Goyal, K. (2018). Experimental investigations of mechanical properties and slurry erosion behaviour of high velocity oxy fuel and plasma sprayed Cr2O3–50% Al2O3 coatings on CA6NM turbine steel under hydro accelerated conditions., Tribology-Materials, Surfaces & Interfaces, 12(2): 97-106.
DOI: 10.1080/17515831.2018.1452369
Google Scholar
[8]
goyal, k., h. singh and r. bhatia (2018). Mechanical and microstructural properties of carbon nanotubes reinforced chromium oxide coated boiler steel., World Journal of Engineering,(just-accepted): 00-00.
DOI: 10.1108/wje-10-2017-0315
Google Scholar
[9]
Goyal, K., H. Singh and R. Bhatia (2019). Behaviour of carbon nanotubes-Cr2O3 thermal barrier coatings in actual boiler., Surface Engineering: 1-11.
DOI: 10.1080/02670844.2019.1584966
Google Scholar
[10]
Jambagi, S. C., A. Agarwal, N. Sarkar and P. Bandyopadhyay (2018). Plasma-Sprayed Titania and Alumina Coatings Obtained from Feedstocks Prepared by Heterocoagulation with 1 wt.% Carbon Nanotube., Journal of Materials Engineering and Performance: 1-9.
DOI: 10.1007/s11665-018-3319-5
Google Scholar
[11]
Ludwig, G. A., C. F. Malfatti, R. M. Schroeder, V. Z. Ferrari and I. L. Muller (2019). WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion., Surface and Coatings Technology, 377: 124918.
DOI: 10.1016/j.surfcoat.2019.124918
Google Scholar
[12]
Otero, E., M. Merino, A. Pardo, M. Biezma and G. Buitrago (1987). Study on Corrosion Products of IN 657 Alloy in Molten Salts., Key Eng. Mater. 20(4): 3583-3591.
Google Scholar
[13]
Poursaeidi, E., A. M. Niaei, M. Arablu and A. Salarvand (2017). Experimental investigation on erosion performance and wear factors of custom 450 steel as the first row blade material of an axial compressor., International Journal of Surface Science and Engineering, 11(2): 85-99.
DOI: 10.1504/ijsurfse.2017.084663
Google Scholar
[14]
Prakash, S., V. Tewari and R. Kumar (2018). Characterization of Hot Corrosion Behavior of Different Regions of Tungsten Inert Gas Weldment in ASTM SA 210 GrA1 Boiler Tube Steel., Materials Performance and Characterization, 7(1): 414-422.
DOI: 10.1520/mpc20180099
Google Scholar
[15]
Premkumar, K. and K. Balasubramanian (2018). Investigations on Hot Corrosion Behaviour of HVOF Sprayed Nanocrystalline Cr3C2-Ni-Cr Coating on Boiler Material at Elevated Temperature.,.
Google Scholar
[16]
Rani, A., N. Bala and C. Gupta (2017). Accelerated Hot Corrosion Studies of D-Gun-Sprayed Cr2O3–50% Al2O3 Coating on Boiler Steel and Fe-Based Superalloy., Oxidation of Metals, 88(5-6): 621-648.
DOI: 10.1007/s11085-017-9759-8
Google Scholar
[17]
Rapp, R. A. (2002). Hot corrosion of materials: a fluxing mechanism?, Corrosion Science, 44(2): 209-221.
DOI: 10.1016/s0010-938x(01)00057-9
Google Scholar
[18]
Sassatelli, P., G. Bolelli, M. L. Gualtieri, E. Heinonen, M. Honkanen, L. Lusvarghi, T. Manfredini, R. Rigon and M. Vippola (2018). Properties of HVOF-sprayed Stellite-6 coatings., Surface and Coatings Technology, 338: 45-62.
DOI: 10.1016/j.surfcoat.2018.01.078
Google Scholar
[19]
Schütze, M. and W. Quadakkers (2017). Future directions in the field of high-temperature corrosion research., Oxidation of Metals, 87(5-6): 681-704.
DOI: 10.1007/s11085-017-9719-3
Google Scholar
[20]
Shaw, B. A. and R. G. Kelly (2006). What is corrosion?, Interface-Electrochemical Society, 15(1): 24-27.
Google Scholar
[21]
Shukla, V., T. Mehta, B. Kumar, S. Laddha and U. Kumar (2017). Degradation Behaviour of Nanostructured TiAlN Coating Deposited on Superni 718 in Actual Industrial Environment., Materials Today: Proceedings, 4(9): 10244-10248.
DOI: 10.1016/j.matpr.2017.06.357
Google Scholar
[22]
Sidhu, V.P.S., K. Goyal and R. Goyal (2017). Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment. Advanced Engineering Forum, Trans Tech Publ. 20: 1-9.
DOI: 10.4028/www.scientific.net/aef.20.1
Google Scholar
[23]
Singh, G., K. Goyal and R. Bhatia (2018). Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850 C in simulated boiler environment., Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(2): 149-159.
DOI: 10.1007/s40997-017-0090-4
Google Scholar
[24]
Somasundaram, B., R. Kadoli and M. Ramesh (2014). Evaluation of Thermocyclic Oxidation Behavior of HVOF Sprayed (Cr 3 C 2-35% NiCr)+ 5% Si Coatings on Boiler Tube Steels., Procedia Materials Science, 5: 398-407.
DOI: 10.1016/j.mspro.2014.07.282
Google Scholar
[25]
Uusitalo, M., P. Vuoristo and T. Mäntylä (2003). High temperature corrosion of coatings and boiler steels in oxidizing chlorine-containing atmosphere., Materials Science and Engineering: A, 346(1): 168-177.
DOI: 10.1016/s0921-5093(02)00537-3
Google Scholar
[26]
Wang, F. and S. Geng (2003). High temperature oxidation and corrosion resistant nanocrystalline coatings., Surface Engineering, 19(1): 32-36.
DOI: 10.1179/026708402225010056
Google Scholar
[27]
Xi, N., Z. Hang, Y. Liu, H. Chen, M. Zhang and W. Gao (2017). Oxidation behavior of HVOF-sprayed nanostructured and CeO2-modified WC–12Co coatings., International Journal of Modern Physics B, 31(16-19): 1-6.
DOI: 10.1142/s0217979217440246
Google Scholar
[28]
Xu, S., L. Chen, M. Gong, X. Hu, X. Zhang and Z. Zhou (2017). Characterization and engineering application of a novel ceramic composite insulation material., Composites Part B: Engineering, 111: 143-147.
DOI: 10.1016/j.compositesb.2016.12.010
Google Scholar
[29]
Yang, Y., Z.-h. Chu, X.-g. Chen, L. Wang, Z. Liu, Y.-c. Dong, D.-r. Yan, J.-x. Zhang and Z.-l. Kang (2018). Microstructure and properties of Al2O3-ZrO2 composite coatings prepared by air plasma spraying., Applied Surface Science, 431: 93-100.
DOI: 10.1016/j.apsusc.2017.04.073
Google Scholar