Conceptual Design: High-Voltage Transformer

Article Preview

Abstract:

This paper shown and describe this behaviour an original conceptual design of an electrical transformer. The device it is constituted by an electrodynamic actuator and piezoelectric crystals.The input AC voltage generates an axial vibration in the electrodynamic actuator. The axial vibration is transmitted to a piezoelectric crystal which is polarized in the axial direction and generates the output voltage. In a reduced volumes and a single step, it would be possible to reach voltages of tens of MV and great transformation ratios-achieving these voltages is impossible with conventional systems-The transformer works at axial resonance of the piezoelectric crystal. This device operates to the frequency of order kHz; therefore could be used to generate electromagnetic waves. The capacitive and inductive at its output negligible respect conventional transformer. This transformer could be used in countless devices, such as gamma‐ray machines, electron microscope, solid-state propulsion system, Ion thruster, small particle accelerator etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Xu, Y. He, K.L. Strobel, et al., Flight of an aeroplane with solid-state propulsion, Nature 563 (2018) 532–535.

Google Scholar

[2] D. M. Goebel, I. Katz, Fundamentals of electric propulsion: ion and Hall thrusters, N.J: Wiley, Hoboken, (2008).

Google Scholar

[3] R.F. Egerton, Physical Principles of Electron Microscopy, Cham, Springer International Publishing, (2016).

Google Scholar

[4] J. Kawai, T. Yamada, H. Fujimura, Portable X-ray fluorescence spectrometer with an electric battery, BUNSEKI KAGAKU 53 (2004) 183–186.

DOI: 10.2116/bunsekikagaku.53.183

Google Scholar

[5] M. Mazumder, R. Ahmed, A. Wajahat Ali, S.-J. Lee, SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review, Constr. Build. Mater. 186 (2018) 313–329.

DOI: 10.1016/j.conbuildmat.2018.07.126

Google Scholar

[6] M. Sitarz, K. Szkliniarz, J. Jastrzębski, et al., Production of Sc medical radioisotopes with proton and deuteron beams, Appl. Radiat. Isot. 142 (2018) 104–112.

DOI: 10.1016/j.apradiso.2018.09.025

Google Scholar

[7] M. Dosanjh, U. Amaldi, R. Mayer, R. Poetter, ENLIGHT: European network for Light ion hadron therapy, Radiother. Oncol.128 (2018) 76–82.

DOI: 10.1016/j.radonc.2018.03.014

Google Scholar

[8] A. Sari, F. Carrel, and F. Laine, Characterization and Optimization of the Photoneutron Flux Emitted by a 6- or 9-MeV Electron Accelerator for Neutron Interrogation Measurements, IEEE Trans. Nucl. Sci. 65 (2018) 2539–2546.

DOI: 10.1109/tns.2018.2857919

Google Scholar

[9] N.S. Ginzburg, R.M. Rozental, A.S. Sergeev, A.E. Fedotov, I.V. Zotova, V.P. Tarakanov, Generation of Rogue Waves in Gyrotrons Operating in the Regime of Developed Turbulence, Phys. Rev. Lett. 119 (2017) 034801.

DOI: 10.1103/physrevlett.119.034801

Google Scholar

[10] D.V. Fedorchenko, A. Tsechanski, Photoneutronic aspects of the molybdenum-99 production by means of electron linear accelerators, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 438 (2019) 6–13.

DOI: 10.1016/j.nimb.2018.10.018

Google Scholar

[11] P. Thieberger, C. Carlson, D. Steski, et al., Novel high-energy ion implantation facility using a 15 MV Tandem Van de Graaff accelerator, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 442 (2019) 36–40.

DOI: 10.1016/j.nimb.2019.01.016

Google Scholar

[12] T.-L. Su, Y.-M. Zhang, S.-W. Chen, Y.-T. Liu, H.-Y. Lv, J.-T. Liu, A 600kV 15mA Cockcroft–Walton high-voltage power supply with high stability and low-ripple voltage, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. 560 (2006) 613–616.

DOI: 10.1016/j.nima.2006.01.003

Google Scholar

[13] R. L. Murray, K.E. Holbert, Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes, Eighth ed., Butterworth-Heinemann, Oxford, Cambridge, (2020).

Google Scholar

[14] J.L. Conradie, M.E.M. Eisa, P.J. Celliers, et al., Recent optimization of the beam-optical characteristics of the 6MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility, Nucl. Microprobe Technol. Appl 231 (2005) 101–105.

DOI: 10.1016/j.nimb.2005.01.041

Google Scholar

[15] E. Kuffel, W.S. Zaengl, J. Kuffel, High voltage engineering: fundamentals, Oxford ; Butterworth-Heinemann, Boston, (2000).

DOI: 10.1016/b978-075063634-6/50002-2

Google Scholar

[16] J.A. Gordillo, High-voltage transformer, Electr. Eng.102 (2020) 1969–(1973).

Google Scholar

[17] A. Preumont, Mechatronics: dynamics of electromechanical and piezoelectric systems, Dordrecht, Springer, (2006).

Google Scholar

[18] IEEE Standard on Piezoelectricity,, ANSI/IEEE Std 176-1978, 1978, p.1–58.

Google Scholar

[19] IEEE Standard for Relaxor-Based Single Crystals for Transducer and Actuator Applications,, IEEE Std 1859-2017, 2017, p.1–25.

Google Scholar

[20] D. Royer, E. Dieulesaint, Elastic waves in solids, Springer, Berlin ; New York, (2000).

Google Scholar

[21] A. Benwell, S. Kovaleski, M. Kemp, A resonantly driven piezoelectric transformer for high voltage generation, 2008 IEEE International Power Modulators and High-Voltage Conference, (2008), 113–116.

DOI: 10.1109/ipmc.2008.4743592

Google Scholar