[1]
A. Tietz, et al., Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands. Science of the total environment, 2007. 380(1-3): pp.163-172.
DOI: 10.1016/j.scitotenv.2006.11.034
Google Scholar
[2]
A.K. Choudhary, S. Kumar, and C. Sharma, Constructed wetlands: an approach for wastewater treatment. Elixir Pollution, 2011. 37(8): pp.3666-3672.
Google Scholar
[3]
S. Kamble, et al., Environmental and economic performance evaluation of municipal wastewater treatment plants in India: a life cycle approach. Water Science and Technology, 2019. 79(6): pp.1102-1112.
DOI: 10.2166/wst.2019.110
Google Scholar
[4]
P.M. Giri, and S. Kumar, constructed wetlands for water quality improvement, recycling and reuse. Journal of aquatic biology and fisheries, 2014. 2: pp.759-763.
Google Scholar
[5]
A. Corzo, and O. Sanabria, Adaptation of vegetation in high-rate constructed wetland using artificial carriers for bacterial growth: Assessment using phytopathological indicators. Journal of Water Process Engineering, 2019. 32: p.100974.
DOI: 10.1016/j.jwpe.2019.100974
Google Scholar
[6]
J. Vymazal, Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological engineering, 2005. 25(5): pp.478-490.
DOI: 10.1016/j.ecoleng.2005.07.010
Google Scholar
[7]
C. Shiwei, et al., Performance of constructed wetlands with different substrates for the treated effluent from the municipal sewage plant. Journal of Water Reuse and Desalination, 2019. 9(4): pp.452-462.
DOI: 10.2166/wrd.2019.032
Google Scholar
[8]
J. Garcia, et al., Contaminant removal processes in subsurface-flow constructed wetlands: a review. Critical Reviews in Environmental Science and Technology, 2010. 40(7): pp.561-661.
DOI: 10.1080/10643380802471076
Google Scholar
[9]
B. Pucher, and G. Langergraber, Influence of design parameters on the treatment performance of VF wetlands–a simulation study. Water Science and Technology, 2019. 80(2): pp.265-273.
DOI: 10.2166/wst.2019.268
Google Scholar
[10]
T. Saeed, and G. Sun, A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 2012. 112: pp.429-448.
DOI: 10.1016/j.jenvman.2012.08.011
Google Scholar
[11]
D. Ventura, et al., On the performance of a pilot hybrid constructed wetland for stormwater recovery in Mediterranean climate. Water Science and Technology, 2019. 79(6): pp.1051-1059.
DOI: 10.2166/wst.2019.103
Google Scholar
[12]
J. Vymazal, Constructed wetlands for wastewater treatment. Water, 2010. 2(3): pp.530-549.
DOI: 10.3390/w2030530
Google Scholar
[13]
K. Kraiem, et al., Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Science of the total environment, 2019. 670: pp.644-653.
DOI: 10.1016/j.scitotenv.2019.03.220
Google Scholar
[14]
M.G. Healy, M. Rodgers, and J. Mulqueen, Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresource technology, 2007. 98(12): pp.2268-2281.
DOI: 10.1016/j.biortech.2006.07.036
Google Scholar
[15]
P. Foladori, L. Bruni, and S. Tamburini, Bacteria viability and decay in water and soil of vertical subsurface flow constructed wetlands. Ecological engineering, 2015. 82: pp.49-56.
DOI: 10.1016/j.ecoleng.2015.04.058
Google Scholar
[16]
F. García-Ávila, et al., Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. International Soil and Water Conservation Research, 2019. 7: pp.286-296.
DOI: 10.1016/j.iswcr.2019.04.001
Google Scholar
[17]
P. Luo, et al., Nitrogen removal performance and needed area estimation of surface-flow constructed wetlands using a probabilistic approach. Journal of environmental management, 2020. 255: p.109881.
DOI: 10.1016/j.jenvman.2019.109881
Google Scholar
[18]
Y. Wang, et al., Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Science of the total environment, 2019: p.134736.
DOI: 10.1016/j.scitotenv.2019.134736
Google Scholar
[19]
C.S. Akratos, and V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological engineering, 2007. 29(2): pp.173-191.
DOI: 10.1016/j.ecoleng.2006.06.013
Google Scholar
[20]
K. Yahiaoui, et al. Domestic wastewater treatment by vertical-flow filter grown with juncus maritimus in arid region. International Journal of Engineering Research in Africa. 2020, 47: pp.109-117.
DOI: 10.4028/www.scientific.net/jera.47.109
Google Scholar
[21]
S.I. Abou-Elela, and M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecological engineering, 2012. 47: pp.209-213.
DOI: 10.1016/j.ecoleng.2012.06.044
Google Scholar
[22]
L. Bensmina-Mimeche, M. Debabeche, and N. Benameur, capacite de filtres plantes de macrophytes pour l'epuration des eaux usees dans le climat semi-aride. Courrier du Savoir, 2013. 17: pp.33-37.
Google Scholar
[23]
L. Mimeche, et al., possibilite d'elimination des polluants des eaux usees urbains sous climat aride par filtre plante du cyperus papyrus. Courrier du Savoir, 2016, 21: pp.61-66.
Google Scholar
[24]
J. Vymazal, Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 2011. 674(1): pp.133-156.
DOI: 10.1007/s10750-011-0738-9
Google Scholar
[25]
M. Abissy, and L. Mandi, Utilisation des plantes aquatiques enracinées pour le traitement des eaux usées urbaines: cas du roseau. Revue des sciences de l'eau/Journal of Water Science, 1999. 12(2): pp.285-315.
DOI: 10.7202/705353ar
Google Scholar
[26]
J. Rodier, B. Legube, and N. Merlet, Analyse de l'eau Rodier. 9ème edition, 9th editio, 2009, Paris.
Google Scholar
[27]
R. Blazejewski, and S. Murat-Blazejewska, Soil clogging phenomena in constructed wetlands with subsurface flow. Water Science and Technology, 1997. 35(5): pp.183-188.
DOI: 10.2166/wst.1997.0193
Google Scholar
[28]
I. Bruch, et al., Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecological engineering, 2014. 68: pp.124-132.
DOI: 10.1016/j.ecoleng.2014.03.069
Google Scholar
[29]
G. Hua, et al., An integrated model of substrate clogging in vertical flow constructed wetlands. Journal of environmental management, 2013. 119: pp.67-75.
DOI: 10.1016/j.jenvman.2013.01.023
Google Scholar
[30]
P. Knowles, et al., Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecological engineering, 2011. 37(2): pp.99-112.
DOI: 10.1016/j.ecoleng.2010.08.005
Google Scholar
[31]
L.L. Zhuang, et al., The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresource technology, 2019. 293: p.122086.
DOI: 10.1016/j.biortech.2019.122086
Google Scholar
[32]
D. Belkhiri, Traitement des eaux usées urbaines (Aspect environnemental). Mém. Ing. Eco et Env. Eco. Forestier Université de Sétif, 115p, (1999).
Google Scholar
[33]
A.I. Stefanakis, et al., Effluent quality improvement of two pilot-scale, horizontal subsurface flow constructed wetlands using natural zeolite (clinoptilolite). Microporous and Mesoporous Materials, 2009. 124(1-3): pp.131-143.
DOI: 10.1016/j.micromeso.2009.05.005
Google Scholar
[34]
D. Belghyti, et al., Caractérisation physico-chimique des eaux usées d'abattoir en vue de la mise en oeuvre d'un traitement adéquat: cas de Kénitra au Maroc. Afrique Science: Revue Internationale des Sciences et Technologie, 2009. 5(2): pp.199-216.
DOI: 10.4314/afsci.v5i2.61730
Google Scholar
[35]
J. Rodier, L'analyse de l'eau naturelle, eaux résiduaires, eaux de mer, 8ème Edition DUNOD technique. Paris, 2005: pp.1008-1043.
Google Scholar
[36]
J. Vymazal, Removal of nutrients in various types of constructed wetlands. Science of the total environment, 2007. 380(1-3): pp.48-65.
DOI: 10.1016/j.scitotenv.2006.09.014
Google Scholar
[37]
S. Xinshan, L. Qin, and Y. Denghua, Nutrient removal by hybrid subsurface flow constructed wetlands for high concentration ammonia nitrogen wastewater. Procedia Environmental Sciences, 2010. 2: pp.1461-1468.
DOI: 10.1016/j.proenv.2010.10.159
Google Scholar
[38]
C. Keffala, and A. Ghrabi, Nitrogen and bacterial removal in constructed wetlands treating domestic waste water. Desalination, 2005. 185(1-3): pp.383-389.
DOI: 10.1016/j.desal.2005.04.045
Google Scholar
[39]
N. Seghairi, et al., Possibilités d'élimination des phosphates et de l'azote à partir des eaux usées domestiques en utilisant un filtre planté de papyrus. (2013).
DOI: 10.7202/705238ar
Google Scholar
[40]
G. Sun, and D. Austin, Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere, 2007. 68(6): pp.1120-1128.
DOI: 10.1016/j.chemosphere.2007.01.060
Google Scholar
[41]
J.G. Kuenen, and L. Robertson, Ecology of nitrification and denitrification. (1988).
Google Scholar
[42]
E. Paul, and F. Clark, Soil microbiology and biochemistry. Academic Press, San Diego. Soil microbiology and biochemistry. 2nd ed. Academic Press, San Diego., (1996).
DOI: 10.1017/s0014479797213128
Google Scholar
[43]
C.G. Lee, T.D. Fletcher, and G. Sun, Nitrogen removal in constructed wetland systems. Engineering in Life Sciences, 2009. 9(1): pp.11-22.
Google Scholar
[44]
R. Hauck, Atmospheric Nitrogen. Chemistry, Nitrification, Denitrification, and their Interrelationships, in The Natural Environment and the Biogeochemical Cycles1984, Springer. pp.105-125.
DOI: 10.1007/978-3-540-38829-6_5
Google Scholar
[45]
L. Huang, et al., Interactive effect of carbon source with influent COD/N on nitrogen removal and microbial community structure in subsurface flow constructed wetlands. Journal of environmental management, 2019. 250: p.109491.
DOI: 10.1016/j.jenvman.2019.109491
Google Scholar
[46]
Q. He, and K.R. Mankin, performance variations of cod and nitrogen removal by vegetated submerged bed wetlands 1. Jawra. Journal of the American Water Resources Association, 2002. 38(6): pp.1679-1689.
DOI: 10.1111/j.1752-1688.2002.tb04373.x
Google Scholar