Influence of Modeling Approaches on the Response of a Retaining Wall

Article Preview

Abstract:

In this article, the evaluation of the behavior of a gravity retaining wall is analyzed by considering different modeling approaches. The influence of taking into account the spatial variability of soil parameters in modeling approaches on the response of a retaining wall, assessed through horizontal displacements behind the wall and vertical displacements at the base of the wall. The displacements were evaluated with the finite element software CESAR, developed by the Central Laboratory of Bridges and Roads in France (LCPC), and the statistical analysis of the results was performed with Microsoft Excel. The results indicated that the effects of modeling the soil as a heterogeneous case on the wall displacements were much more significant than when the soil is modeled considering the statistically homogeneous case or the analysis case of a multilayer. This influence of the modeling of the soil as being totally heterogeneous is expressed through the lower standard deviations of the displacements, and also through the narrowness of the band defined by the maximums and the minimums of the results of the displacements, with respect to the two other modeling cases. This result leads towards a gain in terms of accuracy of the results, considering the spatial variability of the soil parameters in both directions, horizontal and vertical.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-112

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] He P, Fenton GA, Griffiths D. Calibration of resistance factors for gravity retaining walls. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 2022:1-9.

DOI: 10.1080/17499518.2022.2083180

Google Scholar

[2] Goh A, Zhang F, Zhang W, Zhang Y, Liu H. A simple estimation model for 3D braced excavation wall deflection. Computers and Geotechnics 2017;83:106-13.

DOI: 10.1016/j.compgeo.2016.10.022

Google Scholar

[3] Zhou X, Xie Y, Huang X, He H. Antislip stability analysis of gravity retaining wall by probabilistic approach. International Journal of Geomechanics 2019;19:04019045.

DOI: 10.1061/(asce)gm.1943-5622.0001413

Google Scholar

[4] Sert S, Luo Z, Xiao J, Gong W, Juang CH. Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics 2016;75:182-91.

DOI: 10.1016/j.compgeo.2016.02.004

Google Scholar

[5] Luo Z, Li Y, Zhou S, Di H. Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes. Computers and Geotechnics 2018;95:16-29.

DOI: 10.1016/j.compgeo.2017.11.017

Google Scholar

[6] Guha Ray A, Baidya D. Reliability coupled sensitivity based design approach for gravity retaining walls. Journal of The Institution of Engineers (India): Series A 2012;93:193-201.

DOI: 10.1007/s40030-013-0023-1

Google Scholar

[7] Baidya D, GuhaRay A. Geotechnical Engineering Reliability Aspects". 2017.

Google Scholar

[8] Magnan J-P. Les méthodes statistiques et probabilistes en mécanique des sols: Presses Ponts et Chaussées; 1982.

Google Scholar

[9] Amouzou GY, Soulaïmani A. Numerical Algorithms for Elastoplacity: Finite Elements Code Development and Implementation of the Mohr–Coulomb Law. Applied Sciences 2021;11:4637.

DOI: 10.3390/app11104637

Google Scholar

[10] MAGNAN J-P, MESTAT P. Lois de comportement et modélisation des sols: Ed. Techniques Ingénieur; 1997.

DOI: 10.51257/a-v1-c218

Google Scholar

[11] Mokeddem A. Modélisation géomécanique et probabiliste des rideaux de palplanches: prise en compte de l'interaction sol-structure et de la variabilité spatiale du sol: Université de Bordeaux; 2018.

DOI: 10.3406/ecoru.1999.5135

Google Scholar

[12] Costet J, Sanglerat G. Cours pratique de mécanique des sols, Tome 2, Calcul des ouvrages. Imprimerie Gauthier-Villars, Paris 1983.

Google Scholar

[13] Mestat P, Humbert P, Dubouchet A. Recommandations pour la vérification de modèles d'éléments finis en géotechnique. BULLETIN-LABORATOIRES DES PONTS ET CHAUSSEES 2000:33-52.

Google Scholar

[14] Dhatt G, Touzot G, Lefrançois E. Méthode des éléments finis: Lavoisier; 2005.

Google Scholar

[15] Mestat P. Maillages d'éléments finis pour les ouvrages de géotechnique. Conseils et recommandations. Bulletin-Laboratoires des Ponts et Chaussées 1997:39-64.

Google Scholar

[16] Debard Y. Méthode des éléments finis: élasticité plane. Institut Universitaire de Technologie du Mans 2009.

Google Scholar

[17] Humbert P, Dubouchet A, Fezans G, Remaud D. CESAR-LCPC, un progiciel de calcul dédié au génie civil. Bulletin des laboratoires des ponts et chaussées 2005;256:7-37.

Google Scholar

[18] Varga R, Jelušič P. Failure Probability of an Optimally Designed Gravity Retaining Wall. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 2022;8:04022007.

DOI: 10.1061/ajrua6.0001223

Google Scholar