Laboratory Studies on the Influence of Ionic Strength on Particle Transport Behavior in a Saturated Porous Medium

Article Preview

Abstract:

An experimental study has been undertaken to investigate the effect of flow velocity and ionic strength on the transport of suspended particles (SP) and their deposition in a saturated porous medium. The SP injections were carried out using a laboratory column filled with sand and a pulse injection method. Ionic strengths varying between 0 and 600 mM (NaCl) have prospected. Two velocities were tested: 0.15 and 0.30 cm/s. Selected polydisperse particles diameters ranging from 0.27 to 5 μm and a median diameter (dp50) equal to 2.25 μm were used. An analytical solution of the convection–dispersion equation with first-order deposition kinetics was used to describe the experimental breakthrough curves and to identify the transport parameters. The results show that the increase of ionic strength promotes the retention of the SP in the porous medium. In addition, retention is more important when the flow velocity is low. The deposition kinetics coefficient increases with increasing ionic strength and flow velocity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-102

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Yerro, A. Rohe, K. Soga, Modelling Internal Erosion with the Material Point Method, Procedia Engineering. 175 (2017) 365-372.

DOI: 10.1016/j.proeng.2017.01.048

Google Scholar

[2] M. Zhao, P. Liu, L. Jiang, K. Wang, The Influence of Internal Erosion in Earthen Dams on the Potential Difference Response to Applied Voltage, Water. 13 (2021) 3387.

DOI: 10.3390/w13233387

Google Scholar

[3] O.C. Cai, Influences of TiO2 Nanoparticles on the Transport of Hydrophobic Organic Contaminant in Soil, In Advanced Materials Research. 1010–1012 (2014) 55–68.

DOI: 10.4028/www.scientific.net/amr.1010-1012.55

Google Scholar

[4] D. Arab, P. Pourafshary, S. Ayatollahi, Mitigation of Fine Particles Migration in Deep Bed Filters Treated by a Nanofluid Slug: An Experimental Study, Advanced Materials Research. 829 (2013) 841–845.

DOI: 10.4028/www.scientific.net/amr.829.841

Google Scholar

[5] R. Kretzschmar, K. Barmettler, D. Grolimund, Y.D. Yan, M. Borkovec, H Sticher, Experimental determination of colloid deposition rates and collision efficiencies in natural porous media, Water Resources Research. 33 (1997) 1129-1137.

DOI: 10.1029/97wr00298

Google Scholar

[6] S.S Şengör, K. Ünlü, Colloidal transport of heavy metals in low-advective-velocity environmental systems: Reactive transport model on biogeochemical and hydrodynamic impacts, Vadose Zone Journal

DOI: 10.1002/vzj2.20233

Google Scholar

[7] X. Du, Y. Song, X. Ye, R. Luo, Colloid clogging of saturated porous media under varying ionic strength and roughness during managed aquifer recharge, Journal of Water Reuse and Desalination 1 September. 9 (2019) 225–231.

DOI: 10.2166/wrd.2019.041

Google Scholar

[8] S. Torkzaban, S.A. Bradford, L.J. Vanderzalm, M.B. Patterson, B. Harris, H. Prommer, Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity, Journal of Contaminant Hydrology. 181 (2015) 161-171.

DOI: 10.1016/j.jconhyd.2015.06.005

Google Scholar

[9] D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-Facilitated transport of strongly sorbing contaminants in natural porous media a laboratory column study, Environmental Science and technology. 30 (1996) 3118-3123.

DOI: 10.1021/es960246x

Google Scholar

[10] T.K. Sen, K.C. Khilar Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Advances in Colloid and Interface Science. 119 (2006) 71-96.

DOI: 10.1016/j.cis.2005.09.001

Google Scholar

[11] L. Bennacer, N-D. Ahfir, A. Alem, H.Q. Wang, Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media, Transport in Porous Media. 118 (2017) 251-269.

DOI: 10.1007/s11242-017-0856-6

Google Scholar

[12] J. Won, T. Kim, M. Kang, Y. Choe, H. Choi, Kaolinite and illite colloid transport in saturated porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 626 (2021) 127052.

DOI: 10.1016/j.colsurfa.2021.127052

Google Scholar

[13] J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants, Environmental Science and technology. 23 (1989) 496-502.

DOI: 10.1021/es00063a001

Google Scholar

[14] M. Elimelech, J. Gregory, X. Jia, R.A. Williams, Particle Deposition and Aggregation Measurement: Modeling and Simulation, Butterworth-Heinemann, Oxford, 1995.

Google Scholar

[15] A. Franchi, C.R. O'Melia, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science and technology. 37 (2003) 1122-1129.

DOI: 10.1021/es015566h

Google Scholar

[16] Y. Jiang, L. Yu, H. Sun, X. Yin, C. Wang, S. Mathews, N. Wang, Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength, Chemical Speciation \& Bioavailability. 29 (2017) 186-196.

DOI: 10.1080/09542299.2017.1403293

Google Scholar

[17] D. Ghosh, S. Das, V.K. Gahlot, M. Pulimi, S. Anand, N. Chandrasekaran, P.K. Rai, A. Mukherjee, Nano-SiO2 transport and retention in saturated porous medium: Influence of pH, ionic strength, and natural organics, Journal of Contaminant Hydrology. 248 (2022) 104029.

DOI: 10.1016/j.jconhyd.2022.104029

Google Scholar

[18] K.C. Khilar, H.S. Fogler, The Existence of a Critical Salt Concentration for Particle Release, Journal of Colloid and Interface Science. 101 (1984) 214-224.

DOI: 10.1016/0021-9797(84)90021-3

Google Scholar

[19] H.Q. Wang, M. Lacroix, N. Massei, J.P. Dupont, Transport des particules en milieu poreux détermination des paramètres hydrodispersifs et du coefficient de dépôt, Comptes Rendus de l'Académie des Sciences, Sciences de la Terre et des planets. 331(2000) 97-104.

DOI: 10.1016/s1251-8050(00)01388-4

Google Scholar

[20] B. Bai, Q. Nie, Y. Zhang, X. Wang, W. Hu, Cotransport of heavy metals and SiO2 particles at different temperatures by seepage, Journal of Hydrology. 597 (2021) 125771.

DOI: 10.1016/j.jhydrol.2020.125771

Google Scholar

[21] S. Nishad, R.I. Al-Raoush, Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: A micromodel study, Powder Technology. 377 (2021) 163-173.

DOI: 10.1016/j.powtec.2020.08.086

Google Scholar

[22] N.D. Ahfir, A. Benamar, A. Alem, H.Q. Wang, Influence of Internal Structure and medium length on transport and deposition of suspended particles: A laboratory study, Transport in Porous Media. 76 (2009) 289–307.

DOI: 10.1007/s11242-008-9247-3

Google Scholar

[23] S.A. Bradford, S. Torkzaban, S.L. Walker, Coupling of physical and chemical mechanisms of colloid straining in saturated porous media, Water Research. 41 (2007) 3012-3024.

DOI: 10.1016/j.watres.2007.03.030

Google Scholar

[24] L. Bennacer, N.D. Ahfir, A. Bouanani, A. Alem, H.Q. Wang, Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects, Transport in Porous Media. 100 (2013) 377–392.

DOI: 10.1007/s11242-013-0220-4

Google Scholar

[25] A. Hammadi, N.D. Ahfir, A. Alem, H.Q. Wang, Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media. Transport in Porous Media. 118(2017) 1-14.

DOI: 10.1007/s11242-017-0848-6

Google Scholar

[26] G. Cao, J. Qiao, J. Ai, S. Ning, H. Sun, M. Chen, L. Zhao, G. Zhang, F. Lian, Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials (Basel). 12 (2022) 988.

DOI: 10.3390/nano12060988

Google Scholar

[27] L. Bennacer, N.D. Ahfir, A. Alem, H.Q. Wang, Influence of Particles Sizes and Flow Velocity on the Transport of Polydisperse Fine Particles in Saturated Porous Media: Laboratory Experiments, Water Air Soil Pollut. 233 (2022) 249.

DOI: 10.1007/s11270-022-05732-4

Google Scholar

[28] S. Bhattacharjee, M. Elimelech, Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate, Journal of Colloid and Interface Science. 193 (1997) 273–285.

DOI: 10.1006/jcis.1997.5076

Google Scholar

[29] J.P. Herzig, D.M. Leclerc, P. Le Goff, Flow of suspension through porous media, Application to deep bed filtration, Industrial and Engineering Chemistry. 62 (1970) 8-35.

DOI: 10.1021/ie50725a003

Google Scholar

[30] J.N. Ryan, M. Elimelech, Colloid mobilisation and transport in groundwater, Colloids Surfaces/ A: Physicochemical and Engineering Aspects. 107 (1996) 1-56.

DOI: 10.1016/0927-7757(95)03384-x

Google Scholar

[31] X. Chen, X. Zhang, Z. Wu, Analytical Solution for One-Dimensional Transport of Particles considering Dispersion in Deposition Kinetics, Geofluids. Article ID 1941426 (2019) 7 pages.

DOI: 10.1155/2019/1941426

Google Scholar

[32] Z. Mesticou, M. Kacem, P. Dubujet, Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transport in Porous Media. 103 (2014) 1–24.

DOI: 10.1007/s11242-014-0285-8

Google Scholar

[33] C.V. Chrysikopoulos, V.I. Syngouna, Effect of Gravity on Colloid Transport through Water-Saturated Columns Packed with Glass Beads: Modeling and Experiments, Environmental Science and Technology. 48 (2014) 6805-6813.

DOI: 10.1021/es501295n

Google Scholar

[34] N. Tufenkji, M. Elimelech, Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media, Environmental Science and Technology. 38 (2004) 529-536.

DOI: 10.1021/es034049r

Google Scholar

[35] C. Shen, Y. Jin, J. Zhuang, T. Li, B. Xing, Role and importance of surface heterogeneities in transport of particles in saturated porous media, Critical Reviews in Environmental Science and Technology. 50 (2020) 244-329.

DOI: 10.1080/10643389.2019.1629800

Google Scholar

[36] J. Happel, Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles, AIChE Journal. 4 (1958) 197-201.

DOI: 10.1002/aic.690040214

Google Scholar

[37] X. Chu, T. Li, Z. Li, A. Yan, C. Shen, Transport of Microplastic Particles in Saturated Porous Media, Water, 11, (2019), 2474.

DOI: 10.3390/w11122474

Google Scholar

[38] Y.S.R Krishna, N. Seetha, S. M. Hassanizadeh, Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media, Journal of Contaminant Hydrology, 251, (2022), 104079

DOI: 10.1016/j.jconhyd.2022.104079

Google Scholar