[1]
A. Yerro, A. Rohe, K. Soga, Modelling Internal Erosion with the Material Point Method, Procedia Engineering. 175 (2017) 365-372.
DOI: 10.1016/j.proeng.2017.01.048
Google Scholar
[2]
M. Zhao, P. Liu, L. Jiang, K. Wang, The Influence of Internal Erosion in Earthen Dams on the Potential Difference Response to Applied Voltage, Water. 13 (2021) 3387.
DOI: 10.3390/w13233387
Google Scholar
[3]
O.C. Cai, Influences of TiO2 Nanoparticles on the Transport of Hydrophobic Organic Contaminant in Soil, In Advanced Materials Research. 1010–1012 (2014) 55–68.
DOI: 10.4028/www.scientific.net/amr.1010-1012.55
Google Scholar
[4]
D. Arab, P. Pourafshary, S. Ayatollahi, Mitigation of Fine Particles Migration in Deep Bed Filters Treated by a Nanofluid Slug: An Experimental Study, Advanced Materials Research. 829 (2013) 841–845.
DOI: 10.4028/www.scientific.net/amr.829.841
Google Scholar
[5]
R. Kretzschmar, K. Barmettler, D. Grolimund, Y.D. Yan, M. Borkovec, H Sticher, Experimental determination of colloid deposition rates and collision efficiencies in natural porous media, Water Resources Research. 33 (1997) 1129-1137.
DOI: 10.1029/97wr00298
Google Scholar
[6]
S.S Şengör, K. Ünlü, Colloidal transport of heavy metals in low-advective-velocity environmental systems: Reactive transport model on biogeochemical and hydrodynamic impacts, Vadose Zone Journal
DOI: 10.1002/vzj2.20233
Google Scholar
[7]
X. Du, Y. Song, X. Ye, R. Luo, Colloid clogging of saturated porous media under varying ionic strength and roughness during managed aquifer recharge, Journal of Water Reuse and Desalination 1 September. 9 (2019) 225–231.
DOI: 10.2166/wrd.2019.041
Google Scholar
[8]
S. Torkzaban, S.A. Bradford, L.J. Vanderzalm, M.B. Patterson, B. Harris, H. Prommer, Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity, Journal of Contaminant Hydrology. 181 (2015) 161-171.
DOI: 10.1016/j.jconhyd.2015.06.005
Google Scholar
[9]
D. Grolimund, M. Borkovec, K. Barmettler, H. Sticher, Colloid-Facilitated transport of strongly sorbing contaminants in natural porous media a laboratory column study, Environmental Science and technology. 30 (1996) 3118-3123.
DOI: 10.1021/es960246x
Google Scholar
[10]
T.K. Sen, K.C. Khilar Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Advances in Colloid and Interface Science. 119 (2006) 71-96.
DOI: 10.1016/j.cis.2005.09.001
Google Scholar
[11]
L. Bennacer, N-D. Ahfir, A. Alem, H.Q. Wang, Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media, Transport in Porous Media. 118 (2017) 251-269.
DOI: 10.1007/s11242-017-0856-6
Google Scholar
[12]
J. Won, T. Kim, M. Kang, Y. Choe, H. Choi, Kaolinite and illite colloid transport in saturated porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 626 (2021) 127052.
DOI: 10.1016/j.colsurfa.2021.127052
Google Scholar
[13]
J.F. McCarthy, J.M. Zachara, Subsurface transport of contaminants, Environmental Science and technology. 23 (1989) 496-502.
DOI: 10.1021/es00063a001
Google Scholar
[14]
M. Elimelech, J. Gregory, X. Jia, R.A. Williams, Particle Deposition and Aggregation Measurement: Modeling and Simulation, Butterworth-Heinemann, Oxford, 1995.
Google Scholar
[15]
A. Franchi, C.R. O'Melia, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science and technology. 37 (2003) 1122-1129.
DOI: 10.1021/es015566h
Google Scholar
[16]
Y. Jiang, L. Yu, H. Sun, X. Yin, C. Wang, S. Mathews, N. Wang, Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength, Chemical Speciation \& Bioavailability. 29 (2017) 186-196.
DOI: 10.1080/09542299.2017.1403293
Google Scholar
[17]
D. Ghosh, S. Das, V.K. Gahlot, M. Pulimi, S. Anand, N. Chandrasekaran, P.K. Rai, A. Mukherjee, Nano-SiO2 transport and retention in saturated porous medium: Influence of pH, ionic strength, and natural organics, Journal of Contaminant Hydrology. 248 (2022) 104029.
DOI: 10.1016/j.jconhyd.2022.104029
Google Scholar
[18]
K.C. Khilar, H.S. Fogler, The Existence of a Critical Salt Concentration for Particle Release, Journal of Colloid and Interface Science. 101 (1984) 214-224.
DOI: 10.1016/0021-9797(84)90021-3
Google Scholar
[19]
H.Q. Wang, M. Lacroix, N. Massei, J.P. Dupont, Transport des particules en milieu poreux détermination des paramètres hydrodispersifs et du coefficient de dépôt, Comptes Rendus de l'Académie des Sciences, Sciences de la Terre et des planets. 331(2000) 97-104.
DOI: 10.1016/s1251-8050(00)01388-4
Google Scholar
[20]
B. Bai, Q. Nie, Y. Zhang, X. Wang, W. Hu, Cotransport of heavy metals and SiO2 particles at different temperatures by seepage, Journal of Hydrology. 597 (2021) 125771.
DOI: 10.1016/j.jhydrol.2020.125771
Google Scholar
[21]
S. Nishad, R.I. Al-Raoush, Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: A micromodel study, Powder Technology. 377 (2021) 163-173.
DOI: 10.1016/j.powtec.2020.08.086
Google Scholar
[22]
N.D. Ahfir, A. Benamar, A. Alem, H.Q. Wang, Influence of Internal Structure and medium length on transport and deposition of suspended particles: A laboratory study, Transport in Porous Media. 76 (2009) 289–307.
DOI: 10.1007/s11242-008-9247-3
Google Scholar
[23]
S.A. Bradford, S. Torkzaban, S.L. Walker, Coupling of physical and chemical mechanisms of colloid straining in saturated porous media, Water Research. 41 (2007) 3012-3024.
DOI: 10.1016/j.watres.2007.03.030
Google Scholar
[24]
L. Bennacer, N.D. Ahfir, A. Bouanani, A. Alem, H.Q. Wang, Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects, Transport in Porous Media. 100 (2013) 377–392.
DOI: 10.1007/s11242-013-0220-4
Google Scholar
[25]
A. Hammadi, N.D. Ahfir, A. Alem, H.Q. Wang, Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media. Transport in Porous Media. 118(2017) 1-14.
DOI: 10.1007/s11242-017-0848-6
Google Scholar
[26]
G. Cao, J. Qiao, J. Ai, S. Ning, H. Sun, M. Chen, L. Zhao, G. Zhang, F. Lian, Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials (Basel). 12 (2022) 988.
DOI: 10.3390/nano12060988
Google Scholar
[27]
L. Bennacer, N.D. Ahfir, A. Alem, H.Q. Wang, Influence of Particles Sizes and Flow Velocity on the Transport of Polydisperse Fine Particles in Saturated Porous Media: Laboratory Experiments, Water Air Soil Pollut. 233 (2022) 249.
DOI: 10.1007/s11270-022-05732-4
Google Scholar
[28]
S. Bhattacharjee, M. Elimelech, Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate, Journal of Colloid and Interface Science. 193 (1997) 273–285.
DOI: 10.1006/jcis.1997.5076
Google Scholar
[29]
J.P. Herzig, D.M. Leclerc, P. Le Goff, Flow of suspension through porous media, Application to deep bed filtration, Industrial and Engineering Chemistry. 62 (1970) 8-35.
DOI: 10.1021/ie50725a003
Google Scholar
[30]
J.N. Ryan, M. Elimelech, Colloid mobilisation and transport in groundwater, Colloids Surfaces/ A: Physicochemical and Engineering Aspects. 107 (1996) 1-56.
DOI: 10.1016/0927-7757(95)03384-x
Google Scholar
[31]
X. Chen, X. Zhang, Z. Wu, Analytical Solution for One-Dimensional Transport of Particles considering Dispersion in Deposition Kinetics, Geofluids. Article ID 1941426 (2019) 7 pages.
DOI: 10.1155/2019/1941426
Google Scholar
[32]
Z. Mesticou, M. Kacem, P. Dubujet, Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transport in Porous Media. 103 (2014) 1–24.
DOI: 10.1007/s11242-014-0285-8
Google Scholar
[33]
C.V. Chrysikopoulos, V.I. Syngouna, Effect of Gravity on Colloid Transport through Water-Saturated Columns Packed with Glass Beads: Modeling and Experiments, Environmental Science and Technology. 48 (2014) 6805-6813.
DOI: 10.1021/es501295n
Google Scholar
[34]
N. Tufenkji, M. Elimelech, Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media, Environmental Science and Technology. 38 (2004) 529-536.
DOI: 10.1021/es034049r
Google Scholar
[35]
C. Shen, Y. Jin, J. Zhuang, T. Li, B. Xing, Role and importance of surface heterogeneities in transport of particles in saturated porous media, Critical Reviews in Environmental Science and Technology. 50 (2020) 244-329.
DOI: 10.1080/10643389.2019.1629800
Google Scholar
[36]
J. Happel, Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles, AIChE Journal. 4 (1958) 197-201.
DOI: 10.1002/aic.690040214
Google Scholar
[37]
X. Chu, T. Li, Z. Li, A. Yan, C. Shen, Transport of Microplastic Particles in Saturated Porous Media, Water, 11, (2019), 2474.
DOI: 10.3390/w11122474
Google Scholar
[38]
Y.S.R Krishna, N. Seetha, S. M. Hassanizadeh, Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media, Journal of Contaminant Hydrology, 251, (2022), 104079
DOI: 10.1016/j.jconhyd.2022.104079
Google Scholar