Electrochemical Degradation of Pharmaceutical Compounds as Tetracycline in Aqueous Solution with BDD Electrode

Article Preview

Abstract:

Antibiotics named tetracycline (TC) are the most popular group of pharmaceutical compounds used in therapeutic purpose in human and veterinary medicine and in aquaculture, due to their characteristics as broad spectrum antibiotic. The tetracyclines are a group of natural and semisynthetic products that are bacteriostatic agents with activity against a wide variety of organisms, but of limited use today because of acquired resistance. Even at low concentrations, tetracycline and its metabolites may have a negative influence on the environment. Tetracycline is weakly metabolized or absorbed into the body, some of the ingested antibiotic being eliminated through urine and feces directly into the environment as most of the primarily unchanged form or secondary compounds. Nowadays tetracycline residues can be detected in surface water that was discharged from municipal wastewater treatment plants and agricultural drained. In this study, the degradation of tetracycline and the influence of experimental parameters (initial pH, initial concentration, different flow velocity (mL/s), solution temperature (°C), current intensity (mA)) on electrochemical degradation with BDD electrode were evaluated. The following parameters were analyzed for the samples collected during the electrochemical assays in electrochemical cell with stirrier and BDD/stainless steel electrodes: Chemical oxygen demand (COD), total organic carbon, nitrogen (total Kjeldhal, organic and inorganic), HPLC and UV-Visible absorption spectrophotometry.

You have full access to the following eBook

Info:

[1] K. Kümmerer, Antibiotics in the aquatic environment–A review–Part I, Chemosphere 75 (2009) 417-434.

DOI: 10.1016/j.chemosphere.2008.11.086

Google Scholar

[2] S.A. Sassman, L.S. Lee, Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange, Environmental Science and Technology 39 (2005) 7452–7459.

DOI: 10.1021/es0480217

Google Scholar

[3] C. I. Brinzila, M.J. Pacheco, L. Ciríaco, R.C. Ciobanu, A. Lopes, Electrodegradation of tetracycline on BDD anode, Chemical Engineering Journal 209 (2012) 54-61.

DOI: 10.1016/j.cej.2012.07.112

Google Scholar

[4] G. Gu, K.G. Karthikeyan, Interaction of tetracycline with aluminium and iron hydrous oxides, Environmental Science and Technology 39 (2005) 2660–2667.

DOI: 10.1021/es048603o

Google Scholar

[5] H. Yamamoto, Y. Nakamura, S. Moriguchi, Y. Nakamura, Y. Honda, I Tamura, Y. Hirata, A. Hayashi, J. Sekizawa, Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegadation, and sorption experiments, Water Research 43 (2009).

DOI: 10.1016/j.watres.2008.10.039

Google Scholar

[6] S. Kim, P. Eichhorn, J.N. Jensen, A.S. Weber, D.S. Aga, Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of Tetracycline in the activated sludge process, Environmental Science and Technology 39 (2005).

DOI: 10.1021/es050006u

Google Scholar

[7] A. Boxall, D. Kolpin, B. Holling-Sorensen, J. Tolls, Are veterinary medicines causing environmental risks? Environ. Sci. Techol. 37 (2003) 287A-294A.

DOI: 10.1021/es032519b

Google Scholar

[8] R. Hirsch, T. Ternes, K. Haberer, K.L. Kratz, Occurrence of antibiotics in the aquatic environment, Sci. Total Environ. 225 (1999) 109-118.

DOI: 10.1016/s0048-9697(98)00337-4

Google Scholar

[9] S. Kim, P. Eichhorn, J.N. Jensen, A.S. Tweber, D.S. Aga, Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environ. Sci. Technol. 39 (2005) 5816-5823.

DOI: 10.1021/es050006u

Google Scholar

[10] Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, J. Hazard. Mater. 171 (2009) 678–683.

DOI: 10.1016/j.jhazmat.2009.06.054

Google Scholar

[11] R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya, H.D. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions, Catal. Today 144 (2009) 100–105.

DOI: 10.1016/j.cattod.2008.12.031

Google Scholar

[12] P. Wang, P-S. Yap, T.T. Lim, C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Catal. A: Gen. 399 (2011) 252–261.

DOI: 10.1016/j.apcata.2011.04.008

Google Scholar

[13] J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere 78 (2010) 533–540.

DOI: 10.1016/j.chemosphere.2009.11.024

Google Scholar

[14] M.D. Vendenyapina, Y.N. Eremicheva, V.A. Pavlov, A.A. Vendenyapin, Electrochemical degradation of tetracycline, Russ. J. Appl. Chem. 8 (2008) 800-802.

Google Scholar

[15] A. Rossi, V.A. Alves, L.A. Da Silva, M.A. Oliveira, D.O.S. Assis, F.A. Santos, R.R.S. De Miranda, Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using RuO2 electrode, J. Appl. Electrochem. 39 (2009).

DOI: 10.1007/s10800-008-9676-2

Google Scholar

[16] H. Zhang, F. Liu, X.G. Wu, J.H. Zhang, D.B. Zhang, Degradation of tetracycline in aqueous medium by electrochemical method, Asia-Pac. J. Chem. Eng. 4 (2009) 568–573.

DOI: 10.1002/apj.286

Google Scholar

[17] M. Miyata, I. Ihara, G. Yoshid, K. Toyod K. Umetsu, Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry, Wat. Sci. Technol. 63 (2011) 456-461.

DOI: 10.2166/wst.2011.243

Google Scholar

[18] L. Ciríaco, C. Anjo, J. Correia, M.J. Pacheco, A. Lopes, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54 (2009) 1464–1472.

DOI: 10.1016/j.electacta.2008.09.022

Google Scholar

[19] M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochim. Acta 51 (2005) 191.

DOI: 10.1016/j.electacta.2005.04.023

Google Scholar

[20] I. Sirés, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review, Environment International 40 (2012) 212-229.

DOI: 10.1016/j.envint.2011.07.012

Google Scholar

[21] Ch. Comninellis, C. Pulgarin, Anodic oxidation of phenol for wastewater treatment, J. Appl. Electrochem. 21 (1991) 703-708.

DOI: 10.1007/bf01034049

Google Scholar

[22] Ch. Comninellis, C. Pulharin, Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes, J. Appl. Electrochem. 23 (1993) 108-112.

DOI: 10.1007/bf00246946

Google Scholar

[23] Ch. Comninellis, Application of synthetic BDD electrodes in electrooxidation, in Diamond Electrochemistry, Elsevier, Amsterdam (2005) 449-476.

DOI: 10.1016/b978-044451908-5/50022-x

Google Scholar