Corrosion Resistance Measurements of Amorphous Ni40Ti40Nb20 Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells

Article Preview

Abstract:

Metallic bipolar plates have the advantages of better manufacturability, higher strength over graphite bipolar plates. The higher strength and toughness of the metallic materials permits the reduction of the width of the bipolar plate so, the volume and mass of the fuel cell can also be reduced. In this paper we are investigating the use of Ni-based amorphous material as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). The major requirements of the metallic bipolar plate material are low weight, high corrosion and low contact resistance. The corrosion property of the present alloy has been investigated under conditions that simulate the fuel cell environment. Hydrogen gas and air were bubbled into a 1 N H2SO4 solution at 70 °C, throughout the experiment to simulate the respective anodic and cathodic PEMFC environment. The Ni-base amorphous alloys displayed higher corrosion resistance than stainless steel.

You have full access to the following eBook

Info:

[1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, second ed., John Wiley & Sons, West Sussex, (2003).

Google Scholar

[2] N.M. Sammes, Fuel Cell Technology, Springer-Verlag, London, (2006).

Google Scholar

[3] T. Matsuura, M. Kato, M. Hori, Study on metallic bipolar plate for proton exchange membrane fuel cell J. Power Sources. 161 (2006) 74–78.

DOI: 10.1016/j.jpowsour.2006.04.064

Google Scholar

[4] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, J. Power. Sources. 196 (2011) 2945-2961.

DOI: 10.1016/j.jpowsour.2010.12.041

Google Scholar

[5] J.W. Lim, M. Kim, K.H. Kim, D.G. Lee, Innovative gasketless carbon composite bipolar plates for PEM fuel cells Int. J. Hydrogen Energy. 37 (2012) 19018-19026.

DOI: 10.1016/j.ijhydene.2012.10.024

Google Scholar

[6] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen , E. de Waal, Bipolar plates for PEM fuel cells, J. Power. Sources. 118 (2003) 44–46.

DOI: 10.1016/s0378-7753(03)00070-3

Google Scholar

[7] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, Bipolar plate materials for solid polymer fuel cells, J. Appl. Electrochem. 30 (2000) 101–105.

Google Scholar

[8] S.J. Lee, J.J. Lai, C.H. Huang. Stainless steel bipolar plates. J. Power. Sources. 145 (2005) 362–368.

DOI: 10.1016/j.jpowsour.2005.01.082

Google Scholar

[9] J. Wind, R. Spaeh, W. Kaiser, G. Boehm, Metallic bipolar plates for PEM fuel cells. J. Power. Sources., 105 (2002) 256–260.

DOI: 10.1016/s0378-7753(01)00950-8

Google Scholar

[10] S. Joseph, J.C. McClure, R. Chianelli, P. Pich, P.J. Sebastian, Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). Int. J. Hydrogen Energy. 30 (2005) 1339–1344.

DOI: 10.1016/j.ijhydene.2005.04.011

Google Scholar

[11] S.J. Lee, C.H. Huang, Y.P. Chen, C.T. Hsu, PVD coated bipolar plates for PEM fuel cells, J. Fuel Cell Sci. Technol. 2 (2005) 290–294.

DOI: 10.1115/1.2041671

Google Scholar

[12] Y. Wang, D.O. Northwood, An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments, Int. J. Hydrogen Energy 32 (2007) 895–902.

DOI: 10.1016/j.ijhydene.2007.02.006

Google Scholar

[13] O. Lavigne, C. Alemany-Dumont, B. Normand, S. Berthon-Fabry, R. Metkemeije, Thin chromium nitride PVD coatings on stainless steel for conductive component as bipolar plates of PEM fuel cells: Ex-situ and in-situ performances evaluation, Int. J. Hydrogen Energy 37 (2012).

DOI: 10.1016/j.ijhydene.2012.04.035

Google Scholar

[14] D. Zhang, L. Duan, L. Guo, Z. Wang, J. Zhao, W. -H. Tuan, K. Niihara, TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating, Int. J. Hydrogen Energy, 36 (2011) 9155 – 9161.

DOI: 10.1016/j.ijhydene.2011.04.123

Google Scholar

[15] H. Wang, J.A. Turner, SnO2: F coated ferritic stainless steels for PEM fuel cell bipolar plates, J. Power Sources 170 (2007) 387–394.

DOI: 10.1016/j.jpowsour.2007.04.028

Google Scholar

[16] H. Wang, J.A. Turner, X. Li, R. Bhattacharya, SnO2: F coated austenite stainless steels for PEM fuel cell bipolar plates, J. Power Sources 171 (2007) 567–574.

DOI: 10.1016/j.jpowsour.2007.03.086

Google Scholar

[17] H. Sun, K. Cooke, G. Eitzinger, P. Hamilton, B. Pollet, Development of PVD coatings for PEMFC metallic bipolar plates, Thin Solid Films 528 (2013) 199–204.

DOI: 10.1016/j.tsf.2012.10.094

Google Scholar

[18] K.S. Weil, G. Xia, Z.G. Yang, J.Y. Kim, Development of a niobium clad PEM fuel cell bipolar plate material, Int. J. Hydrogen Energy 32 (2007) 3724–3733.

DOI: 10.1016/j.ijhydene.2006.08.041

Google Scholar

[19] K. Hashimoto, P.Y. Park, J.H. Kim, H. Yoshioka, H. Mitsui, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, Z. Grzesik, S. Mrowec, Recent progress in corrosion resistant metastable alloys, Mater. Sci. Eng. A, 198 (1995) 1-10.

DOI: 10.1016/0921-5093(95)80052-v

Google Scholar

[20] S. Jayalakshmi, V.S. Vasantha, E. Fleury, M. Gupta, Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications, Appl. Energ. 90 (2012) 94–99.

DOI: 10.1016/j.apenergy.2011.01.040

Google Scholar

[21] A. Inoue, T. Shimizu, S. Yamaura, Y. Fujita, S. Takagi, H.M. Kimura, Development of glassy alloy separators for a proton exchange membrane fuel cell (PEMFC), Mater. Trans. 46 (2005) 1706–1710.

DOI: 10.2320/matertrans.46.1706

Google Scholar

[22] H. Yoshioka, K. Asami, A. Kawashima, K. Hashimoto. Laser processed corrosion-resistant amorphous Ni–Cr–P–B surface alloys on a mild steel,. Corros. Sci. 27 (1987) 981–995.

DOI: 10.1016/0010-938x(87)90064-3

Google Scholar

[23] M. Yokoyama, S. Yamaura, H.M. Kimura, A. Inoue. Viscous flow workability of Ni-Cr-P-B metallic glasses produced by meltspinning in air, Mater. Trans. 48 (2007) 3176–3180.

DOI: 10.2320/matertrans.mer2007624

Google Scholar

[24] H. Wang, M.A. Sweikart, J.A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J Power Sources 115 (2003) 243-251.

DOI: 10.1016/s0378-7753(03)00023-5

Google Scholar

[25] M. Nishida, M. Matsuda, Y. Shimada, K. Takashima, K. Ishikawa, K. Aoki, Microstructural and Mechanical Characterizations of Rapidly Solidified Nb-TiNi Hydrogen Permeation Alloy J. Phys. Conf. Ser. 144 (2009) 012106.

DOI: 10.1088/1742-6596/144/1/012106

Google Scholar

[26] Y. Wang, D.O. Northwood, Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells Electrochim. Acta. 52 (2007) 6793–6798.

DOI: 10.1016/j.electacta.2007.05.001

Google Scholar

[27] E. Dura, Ö. N. Cora, M. Koc¸ Effect of manufacturing conditions on the corrosion resistance behavior of metallic bipolar plates in proton exchange membrane fuel cells, J. Power. Sources. 196 (2011) 1235–1241.

DOI: 10.1016/j.jpowsour.2010.08.052

Google Scholar

[28] H.X. Li, S. Yi, Corrosion behaviors of bulk metallic glasses Fe66. 7C7. 0Si3. 3B5. 5P8. 7Cr2. 3Al2. 0Mo4. 5 having different crystal volume fractions, Mater. Chem. Phys. 112 (2008) 305-309.

DOI: 10.1016/j.matchemphys.2008.05.061

Google Scholar

[29] W.H. Jiang, F. Jiang, B.A. Green, F.X. Liu, P.K. Liaw, Electrochemical corrosion behaviour of a Zr-based bulk-metallic glass, Appl. Phys. Lett. 91 (2007) 041904.

DOI: 10.1063/1.2762282

Google Scholar

[30] Z.M. Wang, J. Zhang, X.C. Chang, W.L. Hou, J.Q. Wang, Structure inhibited pit initiation in a Ni–Nb metallic glass, Corros. Sci. 52 (2010) 1342–1350.

DOI: 10.1016/j.corsci.2009.12.014

Google Scholar

[31] NC Grant, MD Archer. The electrochemistry of glassy 60Ni–40Nb in aqueous media, J Electrochem. Soc. 131 (1984) 997–1003.

DOI: 10.1149/1.2115790

Google Scholar

[32] J. Andre, L. Antoni, J. Petit, E. De Vito, A. Montani, Electrical contact resistance between stainless steel bipolar plate and carbon felt in PEFC: a comprehensive study, Int. J. Hydrogen Energy 34 (2009) 3125-3133.

DOI: 10.1016/j.ijhydene.2009.01.089

Google Scholar

[33] J. Jayaraj, Y.C. Kim, H.K. Seok, K.B. Kim, E. Fleury, Development of metallic glasses for bipolar plate application. Mater, Sci, Eng, A. 449-451 (2007) 30-33.

DOI: 10.1016/j.msea.2006.02.238

Google Scholar

[34] D.P. Davies , P.L. Adcock, M. Turpin, S.J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells J. Power Sources 86 (2000) 237–242.

DOI: 10.1016/s0378-7753(99)00524-8

Google Scholar

[35] W. Yoon, X. Huang, P. Fazzino, K.L. Reifsnider, M.A. Akkaoui, Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells J. Power Sources 179 (2008) 265–273.

DOI: 10.1016/j.jpowsour.2007.12.034

Google Scholar