3D Non-Contact Building Survey Technique

Article Preview

Abstract:

This paper presents a non-contact 3D environments mapping technique using mobile robots with different perception devices such as stereo camera, structural light camera or custom made 3D laser scanner. The custom developed non-contact scanning device is suitable for making building surveillance both in small and large scales. These measurements can be further used for urban region planning as well as for navigation purposes for autonomous agents such as mobile vehicles.. The large maps can be built from successive scan merging in an iterative manner. For such an approach is essential the initial matching between two measurements, which in our proposed method was performed using special extracted features from the measured data sets. The registered maps can be further used for perceptual purposes, including object segmentation or planning maps for the mobile agents. For both types of applications, there are given experimental results obtained from the proposed registration and segmentation algorithms.

You have full access to the following eBook

Info:

Periodical:

Pages:

584-592

Citation:

Online since:

June 2013

Export:

Share:

Citation:

[1] F. Maurelli, D. Droeschel, T. Wisspeintner and H. M. S., A 3D Laser Scanner System for Autonomous Vehicle Navigation,, Proceedings of the International Conference on Advanced Robotics (ICAR), pp.1-6, (2009).

Google Scholar

[2] J. Surmann, A 3D Laser Range Finder for Autonomous Mobile Robots, in Proceedings of the International Symposium on Robotics, Zurich, (2001).

Google Scholar

[3] J. W. Weingarten, G. Gruener and R. Siegwart, A State-of-the-Art 3D Sensor for Robot Navigation,, IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS) 2004, pp.2155-2160.

DOI: 10.1109/iros.2004.1389728

Google Scholar

[4] O. &. W. B. Wulf, Fast 3D-Scanning Methods for Laser Measurement Systems, in International Conference on Control Systems and Computer Science, Bucharest, (2005).

Google Scholar

[5] D. Chetverikov and D. a. P. K. Stepanov, Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm, Image and Vision Computing, (2005).

DOI: 10.1016/j.imavis.2004.05.007

Google Scholar

[6] M. Magnusson, T. Duckett and A. J. Lilienthal, Scan Registration for Autonomous Mining Vehicles Using 3D-NDT, Journal of Field Robotics, vol. 24, pp.803-827, (2007).

DOI: 10.1002/rob.20204

Google Scholar

[7] A. Howard, D. F. Wolf and G. S. Sukhatme, Towards 3D Mapping in Large Urban Environments,, International Conference on Intelligent Robots andSystems (IROS 2004, pp.419-426.

DOI: 10.1109/iros.2004.1389388

Google Scholar

[8] A. Zhang, S. Hu, Y. Chen, H. Liu, F. Yang and J. Liu, Fast Continuous 360 Degree Color 3D Laser Scanner, International Archives of the Photogrammetry, Remote Sensingand Spatial Information Sciences vol. 36, pp.409-415, (2008).

Google Scholar

[9] B. Morisset, R. B. Rusu, A. Sundaresan, K. Hauser, M. Agrawal, J. -C. Latombe and M. Beetz, Leaving Flatland: Toward Real-Time 3D Navigation,, IEEE International Conference on Robotics and Automation (ICRA), pp.3786-3792, (2009).

DOI: 10.1109/robot.2009.5152715

Google Scholar

[10] K. Ohno, S. Tadokoro, K. Nagatani, E. Koyanagi and T. Yoshida, Trials of 3-D Map Construction Using the Tele-operated Tracked Vehicle Kenaf at Disaster City,, nternational conference on Intelligent robots and systems(IROS) , (2010).

DOI: 10.1109/robot.2010.5509722

Google Scholar

[11] R. Kaushik, J. Xiao, W. Morris and Z. Zhu, 3D laser scan registration of dual-robot system using vision,, nternational conference on Intelligent robots and systems (IROS), (2009).

DOI: 10.1109/iros.2009.5354773

Google Scholar

[12] A. Birk, N. Vaskevicius, K. Pathak, S. Schwertfeger, J. Poppinga and H. Buelow, 3D Perception and Modeling: Motion Level Teleoperation and Intelligent Autonomous Functions, IEEE Robotics and Automation Magazine (RAM), vol. 6, pp.53-60, (2009).

DOI: 10.1109/mra.2009.934822

Google Scholar

[13] R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library (PCL),, International Conference on Robotics and Automation (ICRA) pp.1-4, (2011).

DOI: 10.1109/icra.2011.5980567

Google Scholar

[14] P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments,, Advanced Reasoning with Depth Cameras Workshop in conjunctionwith the RSS conference, (2010).

DOI: 10.1007/978-3-642-28572-1_33

Google Scholar

[15] N. Vandapel, D. F. Huber, A. Kapuria and M. Hebert, Natural Terrain Classification Using 3-D Ladar Data, IEEE International Conference on Robotics and Automation (ICRA) pp.5117-522, (2004).

DOI: 10.1109/robot.2004.1302529

Google Scholar

[16] Henriksen, L. & Krotkov, E. Natural Terrain Hazard Detection with a Laser Rangefinder Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1997, 968-973.

DOI: 10.1109/robot.1997.614260

Google Scholar

[17] J. J. Leger and P. C. Biesiadecki, Tradeoffs Between Directed and Autonomous Driving on the Mars Exploration Rovers, The International Journal of Robotics Research, vol. 26, pp.91-104, (2007).

DOI: 10.1177/0278364907073777

Google Scholar

[18] H. Surmann, K. Lingemann, A. Nuchter and J. Hertzberg, A 3D Laser Range Finder for Autonomous Mobile Robots,, Robotics and Autonomous Systems, pp.181-192, (2001).

DOI: 10.1016/j.robot.2003.09.004

Google Scholar

[19] A. Nuechter, 3D Robotic Mapping, Springer, p.210, (2009).

Google Scholar

[20] Z. Zhang, Iterative Point Matching for Registration of Free-Form Curves, Technical Report No. RR-1658, (1992).

Google Scholar

[21] L. Tamas and L. C. Goron, 3D Map Building with Mobile Robots, in IEEE MED Conference, pp.615-621, (2012).

DOI: 10.1109/med.2012.6265627

Google Scholar

[22] G. C. Sharp, S. W. Lee and D. K. Wehe, ICP Registration Using Invariant Features, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 24, pp.90-102, (2002).

DOI: 10.1109/34.982886

Google Scholar

[23] B. Steder, R. B. Rusu and K. Konolige, Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries, IROS IEEE Conference, (2011).

DOI: 10.1109/icra.2011.5980187

Google Scholar